Publications by authors named "Michael Muchow"

11 Publications

  • Page 1 of 1

NCBI's Virus Discovery Codeathon: Building "FIVE" -The Federated Index of Viral Experiments API Index.

Viruses 2020 12 10;12(12). Epub 2020 Dec 10.

National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20894, USA.

Viruses represent important test cases for data federation due to their genome size and the rapid increase in sequence data in publicly available databases. However, some consequences of previously decentralized (unfederated) data are lack of consensus or comparisons between feature annotations. Unifying or displaying alternative annotations should be a priority both for communities with robust entry representation and for nascent communities with burgeoning data sources. To this end, during this three-day continuation of the Virus Hunting Toolkit codeathon series (VHT-2), a new integrated and federated viral index was elaborated. This Federated Index of Viral Experiments (FIVE) integrates pre-existing and novel functional and taxonomy annotations and virus-host pairings. Variability in the context of viral genomic diversity is often overlooked in virus databases. As a proof-of-concept, FIVE was the first attempt to include viral genome variation for HIV, the most well-studied human pathogen, through viral genome diversity graphs. As per the publication of this manuscript, FIVE is the first implementation of a virus-specific federated index of such scope. FIVE is coded in BigQuery for optimal access of large quantities of data and is publicly accessible. Many projects of database or index federation fail to provide easier alternatives to access or query information. To this end, a Python API query system was developed to enhance the accessibility of FIVE.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/v12121424DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764237PMC
December 2020

PubRunner: A light-weight framework for updating text mining results.

F1000Res 2017 2;6:612. Epub 2017 May 2.

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.

Biomedical text mining promises to assist biologists in quickly navigating the combined knowledge in their domain. This would allow improved understanding of the complex interactions within biological systems and faster hypothesis generation. New biomedical research articles are published daily and text mining tools are only as good as the corpus from which they work. Many text mining tools are underused because their results are static and do not reflect the constantly expanding knowledge in the field. In order for biomedical text mining to become an indispensable tool used by researchers, this problem must be addressed. To this end, we present PubRunner, a framework for regularly running text mining tools on the latest publications. PubRunner is lightweight, simple to use, and can be integrated with an existing text mining tool. The workflow involves downloading the latest abstracts from PubMed, executing a user-defined tool, pushing the resulting data to a public FTP or Zenodo dataset, and publicizing the location of these results on the public PubRunner website. We illustrate the use of this tool by re-running the commonly used word2vec tool on the latest PubMed abstracts to generate up-to-date word vector representations for the biomedical domain. This shows a proof of concept that we hope will encourage text mining developers to build tools that truly will aid biologists in exploring the latest publications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.12688/f1000research.11389.2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5664974PMC
May 2017

Mouse Prkar1a haploinsufficiency leads to an increase in tumors in the Trp53+/- or Rb1+/- backgrounds and chemically induced skin papillomas by dysregulation of the cell cycle and Wnt signaling.

Hum Mol Genet 2010 Apr 15;19(8):1387-98. Epub 2010 Jan 15.

Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice KennedyShriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.

PRKAR1A inactivation leads to dysregulated cAMP signaling and Carney complex (CNC) in humans, a syndrome associated with skin, endocrine and other tumors. The CNC phenotype is not easily explained by the ubiquitous cAMP signaling defect; furthermore, Prkar1a(+/-) mice did not develop skin and other CNC tumors. To identify whether a Prkar1a defect is truly a generic but weak tumorigenic signal that depends on tissue-specific or other factors, we investigated Prkar1a(+/-) mice when bred within the Rb1(+/-) or Trp53(+/-) backgrounds, or treated with a two-step skin carcinogenesis protocol. Prkar1a(+/-) Trp53(+/-) mice developed more sarcomas than Trp53(+/-) mice (P < 0.05) and Prkar1a(+/-) Rb1(+/-) mice grew more (and larger) pituitary and thyroid tumors than Rb1(+/-) mice. All mice with double heterozygosity had significantly reduced life-spans compared with their single-heterozygous counterparts. Prkar1a(+/-) mice also developed more papillomas than wild-type animals. A whole-genome transcriptome profiling of tumors produced by all three models identified Wnt signaling as the main pathway activated by abnormal cAMP signaling, along with cell cycle abnormalities; all changes were confirmed by qRT-PCR array and immunohistochemistry. siRNA down-regulation of Ctnnb1, E2f1 or Cdk4 inhibited proliferation of human adrenal cells bearing a PRKAR1A-inactivating mutation and Prkar1a(+/-) mouse embryonic fibroblasts and arrested both cell lines at the G0/G1 phase of the cell cycle. In conclusion, Prkar1a haploinsufficiency is a relatively weak tumorigenic signal that can act synergistically with other tumor suppressor gene defects or chemicals to induce tumors, mostly through Wnt-signaling activation and cell cycle dysregulation, consistent with studies in human neoplasms carrying PRKAR1A defects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddq014DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2846157PMC
April 2010

Protein kinase A effects of an expressed PRKAR1A mutation associated with aggressive tumors.

Cancer Res 2008 May;68(9):3133-41

Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892, USA.

Most PRKAR1A tumorigenic mutations lead to nonsense mRNA that is decayed; tumor formation has been associated with an increase in type II protein kinase A (PKA) subunits. The IVS6+1G>T PRKAR1A mutation leads to a protein lacking exon 6 sequences [R1 alpha Delta 184-236 (R1 alpha Delta 6)]. We compared in vitro R1 alpha Delta 6 with wild-type (wt) R1 alpha. We assessed PKA activity and subunit expression, phosphorylation of target molecules, and properties of wt-R1 alpha and mutant (mt) R1 alpha; we observed by confocal microscopy R1 alpha tagged with green fluorescent protein and its interactions with Cerulean-tagged catalytic subunit (C alpha). Introduction of the R1 alpha Delta 6 led to aberrant cellular morphology and higher PKA activity but no increase in type II PKA subunits. There was diffuse, cytoplasmic localization of R1 alpha protein in wt-R1 alpha- and R1 alpha Delta 6-transfected cells but the former also exhibited discrete aggregates of R1 alpha that bound C alpha; these were absent in R1 alpha Delta 6-transfected cells and did not bind C alpha at baseline or in response to cyclic AMP. Other changes induced by R1 alpha Delta 6 included decreased nuclear C alpha. We conclude that R1 alpha Delta 6 leads to increased PKA activity through the mt-R1 alpha decreased binding to C alpha and does not involve changes in other PKA subunits, suggesting that a switch to type II PKA activity is not necessary for increased kinase activity or tumorigenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129544PMC
http://dx.doi.org/10.1158/0008-5472.CAN-08-0064DOI Listing
May 2008

Clinical and molecular genetics of patients with the Carney-Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD.

Eur J Hum Genet 2008 Jan 1;16(1):79-88. Epub 2007 Aug 1.

Department of Genetics, Biology and Biochemistry, University of Torino, Turin, Italy.

Gastrointestinal stromal tumors (GISTs) may be caused by germline mutations of the KIT and platelet-derived growth factor receptor-alpha (PDGFRA) genes and treated by Imatinib mesylate (STI571) or other protein tyrosine kinase inhibitors. However, not all GISTs harbor these genetic defects and several do not respond to STI571 suggesting that other molecular mechanisms may be implicated in GIST pathogenesis. In a subset of patients with GISTs, the lesions are associated with paragangliomas; the condition is familial and transmitted as an autosomal-dominant trait. We investigated 11 patients with the dyad of 'paraganglioma and gastric stromal sarcoma'; in eight (from seven unrelated families), the GISTs were caused by germline mutations of the genes encoding subunits B, C, or D (the SDHB, SDHC and SDHD genes, respectively). In this report, we present the molecular effects of these mutations on these genes and the clinical information on the patients. We conclude that succinate dehydrogenase deficiency may be the cause of a subgroup of GISTs and this offers a therapeutic target for GISTs that may not respond to STI571 and its analogs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.ejhg.5201904DOI Listing
January 2008

Multiple gastrointestinal stromal and other tumors caused by platelet-derived growth factor receptor alpha gene mutations: a case associated with a germline V561D defect.

J Clin Endocrinol Metab 2007 Sep 12;92(9):3728-32. Epub 2007 Jun 12.

Department of Genetics, Biology, and Biochemistry, University of Turin, Turin, Italy.

Context: Gastrointestinal stromal tumors (GISTs) may be caused by somatic or germline mutations of the KIT and PDGFRA genes, but most GISTs associated with neuroendocrine tumors (NETs) are not, suggesting that other molecular pathways are implicated in their pathogenesis.

Objective: In the course of investigating NETs and GIST genetics, we encountered a patient who had a unique combination of multiple fibrous polyps and lipomas of the small intestine and several gastric GISTs.

Design: The study included the clinical description of a unique patient, DNA sequencing of germline and tumor DNA, and comparative genomic hybridization (CGH) and allelic marker analysis of tumor DNA.

Results: The patient was found to carry a germline PDGFRA mutation (V561D) in the heterozygote state; it has only been seen rarely before and only in the somatic state in sporadic GISTs. CGH identified losses of chromosomal regions 1p33-36, 9q12-24, 11q13, and 16q; loss of the 14q region that is commonly lost in NETs and GISTs was shown by DNA marker analysis. These changes are likely to point to secondary and tertiary genetic hits involved in the formation of these rare tumors.

Conclusions: Multiple GISTs and other tumors may be caused by germline PDGFRA gene mutations; the V561D mutation can occur in the germline state and lead to a syndrome that should not be confused with other genetic conditions associated with a predisposition to NETs and other tumors. A number of chromosomal loci are likely to be involved in the PDGFRA V561D-dependent tumorigenesis, as shown by CGH and other DNA analyses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/jc.2007-0894DOI Listing
September 2007

Genetics of carney triad: recurrent losses at chromosome 1 but lack of germline mutations in genes associated with paragangliomas and gastrointestinal stromal tumors.

J Clin Endocrinol Metab 2007 Aug 29;92(8):2938-43. Epub 2007 May 29.

Section on Endocrinology and Genetics, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.

Context: Carney triad (CT) describes the association of paragangliomas (PGLs) with gastrointestinal stromal tumors (GISTs) and pulmonary chondromas. Inactivating mutations of the mitochondrial complex II succinate dehydrogenase (SDH) enzyme subunits SDHB, SDHC, and SDHD are found in PGLs, gain-of-function mutations of c-kit (KIT), and platelet-derived growth factor receptor A (PDGFRA) in GISTs.

Objective: Our objective was to investigate the possibility that patients with CT and/or their tumors may harbor mutations of the SDHB, SDHC, SDHD, KIT, and PDGFRA genes and identify any other genetic alterations in CT tumors.

Design: Three males and 34 females with CT were studied retrospectively. We sequenced the stated genes and performed comparative genomic hybridization on a total of 41 tumors.

Results: No patient had coding sequence mutations of the investigated genes. Comparative genomic hybridization revealed a number of DNA copy number changes: losses dominated among benign lesions, there were an equal number of gains and losses in malignant lesions, and the average number of alterations in malignant tumors was higher compared with benign lesions. The most frequent and greatest contiguous change was 1q12-q21 deletion, a region that harbors the SDHC gene. Another frequent change was loss of 1p. Allelic losses of 1p and 1q were confirmed by fluorescent in situ hybridization and loss-of-heterozygosity studies.

Conclusions: We conclude that CT is not due to SDH-inactivating or KIT- and PDGFRA-activating mutations. GISTs and PGLs in CT are associated with chromosome 1 and other changes that appear to participate in tumor progression and point to their common genetic cause.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/jc.2007-0797DOI Listing
August 2007

Cloning of partial cDNAs for the chicken glucocorticoid and mineralocorticoid receptors and characterization of mRNA levels in the anterior pituitary gland during chick embryonic development.

Domest Anim Endocrinol 2007 Aug 8;33(2):226-39. Epub 2006 Jun 8.

Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.

Virtually nothing is known about glucocorticoid receptor (GR) or mineralocorticoid receptor (MR) gene expression in any avian species. Here we report the cloning of partial cDNAs for chicken GR and MR. These partial cDNAs were used as probes to characterize expression of GR and MR mRNA and to identify the full-length transcripts within the chicken genome. Chicken GR and MR sequences predicted from the genome sequence were compared with those of representatives of other vertebrate classes. GR and MR genes are located on chicken chromosomes 13 and 4, respectively. Northern blotting and reverse transcription-polymerase chain reaction (RT-PCR) results indicate that GR and MR are widely expressed in many tissues. Characterization of mRNA levels in the anterior pituitary gland during chick embryonic development by quantitative real time RT-PCR demonstrates decreased MR and increased GR gene expression between embryonic days 12 and 17. Plasma levels of corticosteroids increased during this same period. This is the first study of GR and MR gene expression in any avian species and the first analysis of changes in pituitary MR gene expression during embryonic development of any species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.domaniend.2006.05.006DOI Listing
August 2007

Gene expression profiling during cellular differentiation in the embryonic pituitary gland using cDNA microarrays.

Physiol Genomics 2006 May 21;25(3):414-25. Epub 2006 Feb 21.

Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA.

The anterior pituitary is comprised of five major hormone-secreting cell types that differentiate during embryonic development in a temporally distinct manner. Microarrays containing 5,128 unique cDNAs expressed in the chicken neuroendocrine system were produced and used to identify genes with potential involvement in the onset of thyroid-stimulating hormone beta-subunit (TSHbeta), growth hormone (GH), and prolactin (PRL) mRNA during embryonic development. We identified 352 cDNAs that were differentially expressed (P < or = 0.05) on embryonic day 10 (e10), e12, e14, or e17, the period of thyrotroph, somatotroph, and lactotroph differentiation. Self-organizing maps were used to identify genes that may function to initiate hormone gene transcription. Consistent with cellular ontogeny, TSHbeta mRNA increased steadily between e10 and e17, GH mRNA increased between e12 and e17, and PRL mRNA did not increase until e17. Expression of 141 genes increased in a manner similar to TSHbeta mRNA, and 64 genes decreased between e10 and e17. Although genes with these expression profiles are likely involved in development of the pituitary gland as a whole, some of these could be specifically associated with thyrotroph differentiation. Similarly, the expression profiles of 69 and 61 genes indicate a potential involvement in the induction of GH and PRL mRNA, respectively. Quantitative real-time RT-PCR was used to confirm microarray results for 31 genes. This is the first study to evaluate changes in anterior pituitary gene expression during embryonic development of any species using microarrays, and numerous transcription factors and signaling molecules not previously implicated in pituitary development were identified.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/physiolgenomics.00248.2005DOI Listing
May 2006

Ontogeny of pituitary thyrotrophs and regulation by endogenous thyroid hormone feedback in the chick embryo.

J Endocrinol 2005 Feb;184(2):407-16

Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA.

Increased thyroid hormone production is essential for hatching of the chick and for the increased metabolism necessary for posthatch endothermic life. However, little is known about the ontogeny and distribution of pituitary thyrotrophs during this period or whether pituitary thyroid-stimulating hormone (TSH) production is regulated by endogenous thyroid hormones during chick embryonic development. This study assessed the abundance and location of pituitary thyrotrophs and the regulation of TSH(beta) peptide and mRNA levels by endogenous thyroid hormones prior to hatching. TSH(beta)-containing cells were first detected on embryonic day (e) 11, and the thyrotroph population increased to maximum levels on e17 and e19 and then decreased prior to hatching (d1). Thyrotroph distribution within the cephalic lobe of the anterior pituitary was determined on e19 by whole-mount immunocytochemistry for TSH(beta) peptide and by whole-mount in situ hybridization for TSH(beta) mRNA. Thyrotroph distribution within the cephalic lobe was heterogeneous among embryos, but most commonly extended from the ventral medial region to the dorsal lateral regions, along the boundary of the cephalic and caudal lobes. Inhibition of endogenous thyroid hormone production with methimazole (MMI) decreased plasma thyroxine (T4) levels and increased pituitary TSH(beta) mRNA levels on e19 and d1. However, control pituitaries contained significantly more TSH(beta) peptide than MMI-treated pituitaries on e17 and e19, suggesting higher TSH secretion into the blood in MMI-treated groups. We conclude that thyrotroph abundance and TSH production increase prior to hatching, that thyrotrophs are localized heterogeneously within the cephalic lobe of the anterior pituitary at that time, and that TSH gene expression and secretion are under negative feedback regulation from thyroid hormones during this critical period of development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1677/joe.1.05944DOI Listing
February 2005

Pituitary expression of type I and type II glucocorticoid receptors during chicken embryonic development and their involvement in growth hormone cell differentiation.

Endocrinology 2004 Jul 7;145(7):3523-31. Epub 2004 Apr 7.

Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA.

Glucocorticoids can induce somatotroph differentiation in vitro and in vivo during chick embryonic and rat fetal development. In the present study, we identified the nuclear receptors involved in somatotroph differentiation and examined their ontogeny and cellular distribution during pituitary development in the chicken embryo. Several steroids were tested for their ability to induce GH cell differentiation. Only glucocorticoids and aldosterone were effective at low nanomolar concentrations, suggesting involvement of both type I (mineralocorticoid) and type II (glucocorticoid) receptors (MR and GR, respectively). ZK98299 and spironolactone (GR and MR antagonists, respectively) when used alone were unable to block corticosterone or aldosterone (2 nm)-induced somatotroph differentiation. However, ZK98299 and spironolactone in combination abolished corticosterone or aldosterone (2 nm)-induced somatotroph differentiation. When used separately, both antagonists attenuated induction of GH mRNA by corticosterone. Spironolactone alone blocked somatotroph differentiation induced by 0.2 nm corticosterone or aldosterone, indicating that corticosteroids at subnanomolar concentrations act only through the MR. GR protein was detected in pituitary extracts as early as embryonic d 8, whereas MR protein was readily detectable only around d 12. GR were expressed in greater than 95% of all pituitary cells, whereas MR were expressed in about 40% of all pituitary cells. Dual-label immunofluorescence revealed that the majority of somatotrophs on d 12 expressed MR. Given the high affinity of corticosteroids for MR and that corticosteroid concentrations during embryonic development are in the subnanomolar range, expression of MR may constitute a significant developmental event during somatotroph differentiation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2004-0155DOI Listing
July 2004