Publications by authors named "Michael Mihlan"

15 Publications

  • Page 1 of 1

Positive feedback amplification in swarming immune cell populations.

Curr Opin Cell Biol 2021 Sep 6;72:156-162. Epub 2021 Sep 6.

Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany. Electronic address:

Several immune cell types (neutrophils, eosinophils, T cells, and innate-like lymphocytes) display coordinated migration patterns when a population, formed of individually responding cells, moves through inflamed or infected tissues. "Swarming" refers to the process in which a population of migrating leukocytes switches from random motility to highly directed chemotaxis to form local cell clusters. Positive feedback amplification underlies this behavior and results from intercellular communication in the immune cell population. We here highlight recent findings on neutrophil swarming from mouse models, zebrafish larvae, and in vitro platforms for human cells, which together advanced our understanding of the principles and molecular mechanisms that shape immune cell swarming.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ceb.2021.07.009DOI Listing
September 2021

Neutrophils self-limit swarming to contain bacterial growth in vivo.

Science 2021 06;372(6548)

Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.

Neutrophils communicate with each other to form swarms in infected organs. Coordination of this population response is critical for the elimination of bacteria and fungi. Using transgenic mice, we found that neutrophils have evolved an intrinsic mechanism to self-limit swarming and avoid uncontrolled aggregation during inflammation. G protein-coupled receptor (GPCR) desensitization acts as a negative feedback control to stop migration of neutrophils when they sense high concentrations of self-secreted attractants that initially amplify swarming. Interference with this process allows neutrophils to scan larger tissue areas for microbes. Unexpectedly, this does not benefit bacterial clearance as containment of proliferating bacteria by neutrophil clusters becomes impeded. Our data reveal how autosignaling stops self-organized swarming behavior and how the finely tuned balance of neutrophil chemotaxis and arrest counteracts bacterial escape.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.abe7729DOI Listing
June 2021

Protein kinase D at the Golgi controls NLRP3 inflammasome activation.

J Exp Med 2017 Sep 17;214(9):2671-2693. Epub 2017 Jul 17.

Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France

The inflammasomes are multiprotein complexes sensing tissue damage and infectious agents to initiate innate immune responses. Different inflammasomes containing distinct sensor molecules exist. The NLRP3 inflammasome is unique as it detects a variety of danger signals. It has been reported that NLRP3 is recruited to mitochondria-associated endoplasmic reticulum membranes (MAMs) and is activated by MAM-derived effectors. Here, we show that in response to inflammasome activators, MAMs localize adjacent to Golgi membranes. Diacylglycerol (DAG) at the Golgi rapidly increases, recruiting protein kinase D (PKD), a key effector of DAG. Upon PKD inactivation, self-oligomerized NLRP3 is retained at MAMs adjacent to Golgi, blocking assembly of the active inflammasome. Importantly, phosphorylation of NLRP3 by PKD at the Golgi is sufficient to release NLRP3 from MAMs, resulting in assembly of the active inflammasome. Moreover, PKD inhibition prevents inflammasome autoactivation in peripheral blood mononuclear cells from patients carrying NLRP3 mutations. Hence, Golgi-mediated PKD signaling is required and sufficient for NLRP3 inflammasome activation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1084/jem.20162040DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5584123PMC
September 2017

Liver ubiquitome uncovers nutrient-stress-mediated trafficking and secretion of complement C3.

Cell Death Dis 2016 10 13;7(10):e2411. Epub 2016 Oct 13.

Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique UMR 7104, Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, Illkirch 67404, France.

Adaptation to changes in nutrient availability is crucial for cells and organisms. Posttranslational modifications of signaling proteins are very dynamic and are therefore key to promptly respond to nutrient deprivation or overload. Herein we screened for ubiquitylation of proteins in the livers of fasted and refed mice using a comprehensive systemic proteomic approach. Among 1641 identified proteins, 117 were differentially ubiquitylated upon fasting or refeeding. Endoplasmic reticulum (ER) and secretory proteins were enriched in the livers of refed mice in part owing to an ER-stress-mediated response engaging retro-translocation and ubiquitylation of proteins from the ER. Complement C3, an innate immune factor, emerged as the most prominent ER-related hit of our screen. Accordingly, we found that secretion of C3 from the liver and primary hepatocytes as well as its dynamic trafficking are nutrient dependent. Finally, obese mice with a chronic nutrient overload show constitutive trafficking of C3 in the livers despite acute changes in nutrition, which goes in line with increased C3 levels and low-grade inflammation reported for obese patients. Our study thus suggests that nutrient sensing in the liver is coupled to release of C3 and potentially its metabolic and inflammatory functions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/cddis.2016.312DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133979PMC
October 2016

Insulin granules. Insulin secretory granules control autophagy in pancreatic β cells.

Science 2015 Feb;347(6224):878-82

Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM, CNRS, Université de Strasbourg, 67404 Illkirch, France. Nouvel Hôpital Civil, Laboratoire de Biochimie et de Biologie Moléculaire, Université de Strasbourg, 67091 Strasbourg, France.

Pancreatic β cells lower insulin release in response to nutrient depletion. The question of whether starved β cells induce macroautophagy, a predominant mechanism maintaining energy homeostasis, remains poorly explored. We found that, in contrast to many mammalian cells, macroautophagy in pancreatic β cells was suppressed upon starvation. Instead, starved β cells induced lysosomal degradation of nascent secretory insulin granules, which was controlled by protein kinase D (PKD), a key player in secretory granule biogenesis. Starvation-induced nascent granule degradation triggered lysosomal recruitment and activation of mechanistic target of rapamycin that suppressed macroautophagy. Switching from macroautophagy to insulin granule degradation was important to keep insulin secretion low upon fasting. Thus, β cells use a PKD-dependent mechanism to adapt to nutrient availability and couple autophagy flux to secretory function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aaa2628DOI Listing
February 2015

Changes and regulation of the C5a receptor on neutrophils during septic shock in humans.

J Immunol 2013 Apr 11;190(8):4215-25. Epub 2013 Mar 11.

Department of Orthopedic Trauma, Hand-, Plastic-, and Reconstructive Surgery, University Hospital Ulm, 89081 Ulm, Germany.

During experimental sepsis, excessive generation of the anaphylatoxin C5a results in reduction of the C5a receptor (C5aR) on neutrophils. These events have been shown to result in impaired innate immunity. However, the regulation and fate of C5aR on neutrophils during sepsis are largely unknown. In contrast to 30 healthy volunteers, 60 patients in septic shock presented evidence of complement activation with significantly increased serum levels of C3a, C5a, and C5b-9. In the septic shock group, the corresponding decrease in complement hemolytic activity distinguished survivors from nonsurvivors. Neutrophils from patients in septic shock exhibited decreased C5aR expression, which inversely correlated with serum concentrations of C-reactive protein (CRP) and clinical outcome. In vitro exposure of normal neutrophils to native pentameric CRP led to a dose- and time-dependent loss of C5aR expression on neutrophils, whereas the monomeric form of CRP, as well as various other inflammatory mediators, failed to significantly alter C5aR levels on neutrophils. A circulating form of C5aR (cC5aR) was detected in serum by immunoblotting and a flow-based capture assay, suggestive of an intact C5aR molecule. Levels of cC5aR were significantly enhanced during septic shock, with serum levels directly correlating with lethality. The data suggest that septic shock in humans is associated with extensive complement activation, CRP-dependent loss of C5aR on neutrophils, and appearance of cC5aR in serum, which correlated with a poor outcome. Therefore, cC5aR may represent a new sepsis marker to be considered in tailoring individualized immune-modulating therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1200534DOI Listing
April 2013

Hairless promotes PPARγ expression and is required for white adipogenesis.

EMBO Rep 2012 Nov 11;13(11):1012-20. Epub 2012 Sep 11.

Institute of Cell Biology, ETH Zurich, Zurich 8093, Switzerland.

Adipose tissue is the largest compartment in the mammalian body for storing energy as fat, providing an important reservoir of fuel for maintaining whole body energy homeostasis. Herein, we identify the transcriptional cofactor hairless (HR) to be required for white adipogenesis. Moreover, forced expression of HR in non-adipogenic precursor cells induces adipogenic gene expression and enhances adipocyte formation under permissive conditions. HR exerts its proadipogenic effects by regulating the expression of PPARγ, one of the central adipogenic transcription factors. In conclusion, our data provide a new mechanism required for white adipogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/embor.2012.133DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3492706PMC
November 2012

Persistence versus escape: Aspergillus terreus and Aspergillus fumigatus employ different strategies during interactions with macrophages.

PLoS One 2012 3;7(2):e31223. Epub 2012 Feb 3.

Microbial Biochemistry and Physiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany.

Invasive bronchopulmonary aspergillosis (IBPA) is a life-threatening disease in immunocompromised patients. Although Aspergillus terreus is frequently found in the environment, A. fumigatus is by far the main cause of IBPA. However, once A. terreus establishes infection in the host, disease is as fatal as A. fumigatus infections. Thus, we hypothesized that the initial steps of disease establishment might be fundamentally different between these two species. Since alveolar macrophages represent one of the first phagocytes facing inhaled conidia, we compared the interaction of A. terreus and A. fumigatus conidia with alveolar macrophages. A. terreus conidia were phagocytosed more rapidly than A. fumigatus conidia, possibly due to higher exposure of β-1,3-glucan and galactomannan on the surface. In agreement, blocking of dectin-1 and mannose receptors significantly reduced phagocytosis of A. terreus, but had only a moderate effect on phagocytosis of A. fumigatus. Once phagocytosed, and in contrast to A. fumigatus, A. terreus did not inhibit acidification of phagolysosomes, but remained viable without signs of germination both in vitro and in immunocompetent mice. The inability of A. terreus to germinate and pierce macrophages resulted in significantly lower cytotoxicity compared to A. fumigatus. Blocking phagolysosome acidification by the v-ATPase inhibitor bafilomycin increased A. terreus germination rates and cytotoxicity. Recombinant expression of the A. nidulans wA naphthopyrone synthase, a homologue of A. fumigatus PksP, inhibited phagolysosome acidification and resulted in increased germination, macrophage damage and virulence in corticosteroid-treated mice. In summary, we show that A. terreus and A. fumigatus have evolved significantly different strategies to survive the attack of host immune cells. While A. fumigatus prevents phagocytosis and phagolysosome acidification and escapes from macrophages by germination, A. terreus is rapidly phagocytosed, but conidia show long-term persistence in macrophages even in immunocompetent hosts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0031223PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272006PMC
September 2012

Complement regulation at necrotic cell lesions is impaired by the age-related macular degeneration-associated factor-H His402 risk variant.

J Immunol 2011 Oct 19;187(8):4374-83. Epub 2011 Sep 19.

Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany.

Age-related macular degeneration is a leading form of blindness in Western countries and is associated with a common SNP (rs 1061170/Y402H) in the Factor H gene, which encodes the two complement inhibitors Factor H and FHL1. However, the functional consequences of this Tyr(402) His exchange in domain 7 are not precisely defined. In this study, we show that the Tyr(402) His sequence variation affects Factor H surface recruitment by monomeric C-reactive protein (mCRP) to specific patches on the surface of necrotic retinal pigment epithelial cells. Enhanced attachment of the protective Tyr(402) variants of both Factor H and FHL1 by mCRP results in more efficient complement control and further provides an anti-inflammatory environment. In addition, we demonstrate that mCRP is generated on the surface of necrotic retinal pigment epithelial cells and that this newly formed mCRP colocalizes with the cell damage marker annexin V. Bound to the cell surface, Factor H-mCRP complexes allow complement inactivation and reduce the release of the proinflammatory cytokine TNF-α. This mCRP-mediated complement inhibitory and anti-inflammatory activity at necrotic membrane lesions is affected by residue 402 of Factor H and defines a new role for mCRP, for Factor H, and also for the mCRP-Factor H complex. The increased protective capacity of the Tyr(402) Factor H variant allows better and more efficient clearance and removal of cellular debris and reduces inflammation and pathology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1002488DOI Listing
October 2011

Monomeric C-reactive protein modulates classic complement activation on necrotic cells.

FASEB J 2011 Dec 19;25(12):4198-210. Epub 2011 Aug 19.

Department of Infection Biology, Leibniz Institute for Natural Products Research and Infection Biology, Beutenbergstrasse 11a, 07745 Jena, Germany.

The acute-phase protein C-reactive protein (CRP) recruits C1q to the surface of damaged cells and thereby initiates complement activation. However, CRP also recruits complement inhibitors, such as C4b-binding protein (C4bp) and factor H, which both block complement progression at the level of C3 and inhibits inflammation. To define how CRP modulates the classic complement pathway, we studied the interaction of CRP with the classic pathway inhibitor C4bp. Monomeric CRP (mCRP), but not pentameric CRP (pCRP), binds C4bp and enhances degradation of C4b and C3b. Both C1q, the initiator, and C4bp, the inhibitor of the classic pathway, compete for mCRP binding, and this competition adjusts the local balance of activation and inhibition. After attachment of pCRP to the surface of necrotic rat myocytes, generation of mCRP was demonstrated over a period of 18 h. Similarly, a biological role for mCRP, C1q, and C4bp in the disease setting of acute myocardial infarction was revealed. In this inflamed tissue, mCRP, pCRP, C4bp, C1q, and C4d were detected in acetone-fixed and in unfixed tissue. Protein levels were enhanced 6 h to 5 d after infarction. Thus, mCRP bound to damaged cardiomyocytes recruits C1q to activate and also C4bp to control the classic complement pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.11-186460DOI Listing
December 2011

Human complement factor H is a novel diagnostic marker for lung adenocarcinoma.

Int J Oncol 2011 Jul 18;39(1):161-8. Epub 2011 Apr 18.

Institute of Pathology, University Hospital Jena, Friedrich-Schiller-University Jena, Ziegelmühlenweg 1, Jena 07743, Germany.

Human complement factor H (CFH), a central complement control protein, is a member of the regulators of complement activation family. Recent studies suggested that CFH may play a key role in the resistance of complement-mediated lysis in various cancer cells. In this study, we investigated the role of CFH in human lung cancer. Expression of CFH was analyzed in lung cancer cell lines by RT-PCR, Western blotting and immunofluorescence. In primary lung tumors, the protein expression of CFH was evaluated by immunohistochemistry (IHC) on tissue microarray (TMA). Binding of CFH to lung cancer cells was detected by flow cytometry. mRNA expression of CFH was detected in 6 out of 10 non-small cell lung cancer (NSCLC) cell lines, but in none of the small cell lung cancer (SCLC) cell lines. In line with Western blotting, immunofluorescence analysis demonstrated CFH protein expression in 3 NSCLC cell lines, and the immunoreaction was mainly associated with cell cytoplasm and membrane. In primary lung tumors, 54 out of 101 samples exhibited high expression of CFH and high expression was significantly correlated with lung adenocarcinoma (p=0.009). Also, in adenocarcinoma of the lung, Kaplan-Meier survival analysis showed a tendency that CFH-positive tumors had worse prognosis in comparison to CFH-negative tumors (p=0.082). Additionally, shorter survival time of patients with adenocarcinoma (<20 months) was associated with higher staining of CFH (p=0.033). Our data showed that non-small cell lung cancer cells expressed and secreted CFH. CFH might be a novel diagnostic marker for human lung adenocarcinoma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijo.2011.1010DOI Listing
July 2011

Molecular basis of C-reactive protein binding and modulation of complement activation by factor H-related protein 4.

Mol Immunol 2010 Mar 29;47(6):1347-55. Epub 2009 Dec 29.

Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany.

C-reactive protein (CRP) is a pattern recognition molecule that binds several microbial and host ligands. Ligand-bound CRP activates the complement system via the classical pathway. Previously, we identified human complement factor H-related protein 4 (CFHR4), a member of the factor H protein family, as a CRP binding protein. Here, we investigated the molecular basis and the functional relevance of the interaction of CFHR4 with native CRP. Using recombinantly expressed CFHR4 fragments, the CRP binding site was localized to the first short consensus repeat (SCR) domain of CFHR4. Peptide arrays identified residues 35-41 of CFHR4 to be involved in CRP binding. Substitutions of the positively charged amino acids of this motif resulted in strongly reduced CRP binding. Sequence comparisons revealed that such a motif is not present in the related SCR6 domain of factor H, or in the homologous domains of the four other CFHR proteins. Homology modelling based on SCR6 of factor H showed that the CRP binding site is surface exposed on SCR1 of CFHR4. CFHR4-bound CRP was able to activate complement, determined by C3 fragment deposition. Recombinant CFHR4 proteins with mutations in the identified binding site showed reduced CRP binding, which in turn resulted in reduced complement activation. In summary, these data reveal the molecular basis of the specific interaction of CFHR4 with native CRP and suggest a role for CFHR4 in enhancing opsonization via CRP binding.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molimm.2009.12.005DOI Listing
March 2010

Factor H-related protein 1 (CFHR-1) inhibits complement C5 convertase activity and terminal complex formation.

Blood 2009 Sep 15;114(12):2439-47. Epub 2009 Jun 15.

Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.

Homozygous deletion of a 84-kb genomic fragment in human chromosome 1 that encompasses the CFHR1 and CFHR3 genes represents a risk factor for hemolytic uremic syndrome (HUS) but has a protective effect in age-related macular degeneration (AMD). Here we identify CFHR1 as a novel inhibitor of the complement pathway that blocks C5 convertase activity and interferes with C5b surface deposition and MAC formation. This activity is distinct from complement factor H, and apparently factor H and CFHR1 control complement activation in a sequential manner. As both proteins bind to the same or similar sites at the cellular surfaces, the gain of CFHR1 activity presumably is at the expense of CFH-mediated function (inhibition of the C3 convertase). In HUS, the absence of CFHR1 may result in reduced inhibition of terminal complex formation and in reduced protection of endothelial cells upon complement attack. These findings provide new insights into complement regulation on the cell surface and biosurfaces and likely define the role of CFHR1 in human diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2009-02-205641DOI Listing
September 2009

Human complement factor H-related protein 4 binds and recruits native pentameric C-reactive protein to necrotic cells.

Mol Immunol 2009 Jan 11;46(3):335-44. Epub 2008 Dec 11.

Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany.

Human complement factor H-related protein 4 (CFHR4) is a plasma glycoprotein which appears in two isoforms. CFHR4 is a member of the factor H protein family, and shares structural similarity and sequence homology with the other CFHR proteins and with the complement regulator factor H. Given the structural and sequence similarity, we hypothesized that similar to factor H, CFHR4 binds to C-reactive protein (CRP). We have recombinantly expressed the two CFHR4 isoforms and analyzed their binding to both native and denatured, monomeric CRP. Here, we show that both CFHR4 isoforms bind in the presence of calcium to native pentameric CRP, but not to modified CRP. This is in contrast to factor H, which binds to modified CRP independent of calcium. Comparison of the two CFHR4 isoforms and a recombinant CFHR4 fragment for CRP binding indicates that the first domain of CFHR4 is relevant for this interaction. Interaction of the native proteins was demonstrated by co-precipitation of CFHR4 and CRP from serum of sepsis patients with elevated CRP levels. CFHR4 bound to necrotic cells and was localized in necrotic tumor tissue as demonstrated by immunohistological analyses. In addition, CFHR4 facilitated binding of native CRP to the surface of necrotic cells. Altogether these data identify CFHR4 as a novel ligand for native CRP, and suggest a role for CFHR4 in opsonization of necrotic cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molimm.2008.10.029DOI Listing
January 2009

The alternative pathway of complement: a pattern recognition system.

Adv Exp Med Biol 2007 ;598:80-92

Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute for Natural Products Research, Jena, Germany.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-0-387-71767-8_7DOI Listing
October 2007
-->