Publications by authors named "Michael Maschan"

33 Publications

Serotherapy-Free Regimen Improves Non-Relapse Mortality and Immune Recovery Among the Recipients of αβ TCell-Depleted Haploidentical Grafts: Retrospective Study in Childhood Leukemia.

Transplant Cell Ther 2021 Apr 14;27(4):330.e1-330.e9. Epub 2021 Jan 14.

Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Medical Center Of Pediatric Hematology, Oncology And Immunology, Moscow, Russia. Electronic address:

Depletion of αβ T cells from the graft prevents graft-versus-host disease (GVHD) and improves the outcome of hematopoietic stem cell transplantation (HSCT) from haploidentical donors. Delayed recovery of adaptive immunity remains a problem, which can be approached by adoptive T-cell transfer. In a randomized trial, we have assessed the safety and efficacy of low-dose memory (CD45RA-depleted) donor lymphocytes (mDLI) after HSCT with αβ T-cell depletion. Antithymocyte globulin (ATG) is viewed as an essential component of preparative regimen, critical for both prevention of graft failure and GVHD. Variable pharmacokinetics of ATG may significantly affect lymphocyte subpopulations after HSCT. To uncover the potential of mDLI, we replaced rabbit ATG with tocilizumab and abatacept. Here we compare post hoc the immune recovery and the key clinical outcomes, including nonrelapse mortality (NRM), overall- and event-free survival (OS and EFS), between the cohort enrolled in the prospective randomized trial and a historical cohort, comprised of patients grafted with a conventional ATG-based HSCT with αβ T cell depletion. A cohort of 149 children was enrolled in the prospective trial and 108 patients were selected as historical controls from a prospectively populated database. Patient population was comprised of children with high-risk hematologic malignancies, with more than 90% represented by acute leukemia. Median age at enrollment was 8.8 years. In the prospective cohort 91% of the donors were haploidentical parents, whereas in the historical cohort 72% of the donors were haploidentical. Conditioning was based on either 12Gy total body irradiation or treosulfan. Thiotepa, fludarabine, bortezomib, and rituximab were used as additional agents. Patients in the historical cohort received rabbit ATG at 5 mg/kg total dose, while prospective cohort patients received tocilizumab at 8 mg /kg on day -1 and abatacept at 10 mg/kg on days 0, 7, 14, and 28. Patients in the prospective trial cohort were randomized 1:1 to receive mDLI starting on day 0, whereas 69% of historical cohort patients received mDLI after engraftment, as part of previous trials. Primary engraftment rate was 99% in the prospective cohort and 98% in the historical cohort. The incidence of grade II-IV aGVHD was 13% in the prospective cohort and 16 % in the control group. Chronic GVHD developed among 13% (historical) and 7% (prospective) cohorts (P = .07). The incidence of cytomegalovirus viremia was 51% in the prospective cohort arm and 54% in the historical control arm (p = ns). Overall, in the prospective cohort 2-year NRM was 2%, incidence of relapse was 25%, EFS was 71%, and OS was 80%, whereas in the historical cohort 2-year NRM was 13%, incidence of relapse was 19%, EFS was 67%, and OS was 76%, difference non-significant for relapse and survival. NRM was significantly improved in the ATG-free cohort (P = .002). Recovery of both αβ- and γδ- T cells was significantly improved at days +30 and +60 after HSCT in recipients of ATG-free preparative regimens, as well as recovery of naïve T cells. Among the recipients of αβ T-cell-depleted grafts, replacement of ATG with nonlymphodepleting abatacept and tocilizumab immunomodulation did not compromise engraftment and GVHD control and was associated with significantly lower NRM and better immune recovery early after HSCT.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtct.2021.01.010DOI Listing
April 2021

Relative expansion of CD19-negative very-early normal B-cell precursors in children with acute lymphoblastic leukaemia after CD19 targeting by blinatumomab and CAR-T cell therapy: implications for flow cytometric detection of minimal residual disease.

Br J Haematol 2021 May 14;193(3):602-612. Epub 2021 Mar 14.

National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation.

CD19-directed treatment in B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) frequently leads to the downmodulation of targeted antigens. As multicolour flow cytometry (MFC) application for minimal/measurable residual disease (MRD) assessment in BCP-ALL is based on B-cell compartment study, CD19 loss could hamper MFC-MRD monitoring after blinatumomab or chimeric antigen receptor T-cell (CAR-T) therapy. The use of other antigens (CD22, CD10, CD79a, etc.) as B-lineage gating markers allows the identification of CD19-negative leukaemia, but it could also lead to misidentification of normal very-early CD19-negative BCPs as tumour blasts. In the current study, we summarized the results of the investigation of CD19-negative normal BCPs in 106 children with BCP-ALL who underwent CD19 targeting (blinatumomab, n = 64; CAR-T, n = 25; or both, n = 17). It was found that normal CD19-negative BCPs could be found in bone marrow after CD19-directed treatment more frequently than in healthy donors and children with BCP-ALL during chemotherapy or after stem cell transplantation. Analysis of the antigen expression profile revealed that normal CD19-negative BCPs could be mixed up with residual leukaemic blasts, even in bioinformatic analyses of MFC data. The results of our study should help to investigate MFC-MRD more accurately in patients who have undergone CD19-targeted therapy, even in cases with normal CD19-negative BCP expansion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/bjh.17382DOI Listing
May 2021

Plerixafor added to G-CSF allows mobilization of a sufficient number of hematopoietic progenitors without impacting the efficacy of TCR-alpha/beta depletion in pediatric haploidentical and genoidentical donors failing to mobilize with G-CSF alone.

J Clin Apher 2021 Mar 8. Epub 2021 Mar 8.

Dmitri Rogachev National Research Centre for Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russian Federation, Moscow, Russia.

Background: Collection of a large number of early hematopoietic progenitors is essential for allogeneic apheresis products intended for TCR-alpha/beta depletion.

Materials And Methods: We added plerixafor 0.24 mg/kg body weight (bw) on day 4 of high-dose filgrastim mobilization 10 hours prior to apheresis in 16 (30.5%) pediatric allogeneic donors who failed to recover a sufficient number of CD34+ cells.

Results: On day 4 of G-CSF, the median CD34+ cell count in peripheral blood was 6 per μL (range 4-9 per μL) in 6 poor mobilizers and 16 per μL (range 12-19 per μL) in insufficient mobilizers. In all donors, the threshold of 50 CD34+ cells/μL was achieved, and the median increase was 14.8-fold in poor mobilizers and 6.5-fold in insufficient mobilizers, whereas it was 3.45-fold increase in those mobilized with G-CSF alone.

Discussion: In all donors, a predefined number of >10 × 10 CD34+ cells/kg of recipient bw before depletion was reached in the apheresis product. The use of plerixafor did not affect the purity of further TCR-alpha/beta depletion. Side effects were mild to moderate and consisted of nausea and vomiting.

Conclusion: Thus, the safety and high efficacy of plerixafor was proven in healthy pediatric allogeneic hematopoietic cell donors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jca.21891DOI Listing
March 2021

Safety and efficacy of the low-dose memory (CD45RA-depleted) donor lymphocyte infusion in recipients of αβ T cell-depleted haploidentical grafts: results of a prospective randomized trial in high-risk childhood leukemia.

Bone Marrow Transplant 2021 Feb 16. Epub 2021 Feb 16.

Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.

Depletion of αβ T cells from the graft prevents graft-vs.-host disease (GVHD) and improves outcome of HSCT from haploidentical donors. In a randomized trial, we aimed to evaluate the safety and efficacy of low-dose memory (CD45RA-depleted) donor lymphocytes (mDLI) after HSCT with αβ T-cell depletion. A cohort of 149 children was enrolled, 76 were randomized to receive scheduled mDLI and 73 received standard care. Conditioning was based on either 12 Gy total body irradiation or treosulfan. Rabbit antithymocyte globulin was replaced by tocilizumab and abatacept. Primary end points were the incidence of acute GVHD grades II-IV and the incidence of cytomegalovirus (CMV) viremia. The incidence of grades II-IV aGVHD was 14% in the experimental arm and 12% in the control arm, p-0.8. The incidence of CMV viremia was 45% in the experimental arm and 55% in the control arm, p-0.4. Overall, in the total cohort 2-year NRM was 2%, cumulative incidence of relapse was 25%, event-free survival 71%, and overall survival 80%, without difference between the study arms. Memory DLI was associated with improved recovery of CMV-specific T-cell responses in a subcohort of CMV IgG seropositive recipients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41409-021-01232-xDOI Listing
February 2021

GATA1 mutation analysis and molecular landscape characterization in acute myeloid leukemia with trisomy 21 in pediatric patients.

Int J Lab Hematol 2021 Jan 2. Epub 2021 Jan 2.

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.

Introduction: Accurate detection of GATA1 mutation is highly significant in patients with acute myeloid leukemia (AML) and trisomy 21 as it allows optimization of clinical protocol. This study was aimed at (a) enhanced search for GATA1 mutations; and (b) characterization of molecular landscapes for such conditions.

Methods: The DNA samples from 44 patients with newly diagnosed de novo AML with trisomy 21 were examined by fragment analysis and Sanger sequencing of the GATA1 exon 2, complemented by targeted high-throughput sequencing (HTS).

Results: Acquired GATA1 mutations were identified in 43 cases (98%). Additional mutations in the genes of JAK/STAT signaling, cohesin complex, and RAS pathway activation were revealed by HTS in 48%, 36%, and 16% of the cases, respectively.

Conclusions: The GATA1 mutations were reliably determined by fragment analysis and/or Sanger sequencing in a single PCR amplicon manner. For patients with extremely low blast counts and/or rare variants, the rapid screening with simple molecular approaches must be complemented with HTS. The JAK/STAT and RAS pathway-activating mutations may represent an extra option of targeted therapy with kinase inhibitors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/ijlh.13451DOI Listing
January 2021

Immunophenotypic changes of leukemic blasts in children with relapsed/refractory B-cell precursor acute lymphoblastic leukemia, who have been treated with Blinatumomab.

Haematologica 2020 Dec 30;Online ahead of print. Epub 2020 Dec 30.

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology; 1 Samory Mashela St., Moscow 117998, Russian Federation.

Not available.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3324/haematol.2019.241596DOI Listing
December 2020

Chimerism evaluation in measurable residual disease-suspected cells isolated by flow cell sorting as a reliable tool for measurable residual disease verification in acute leukemia patients after allogeneic hematopoietic stem cell transplantation.

Cytometry B Clin Cytom 2020 Dec 28. Epub 2020 Dec 28.

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.

Background: The presence of minimal/measurable residual disease (MRD) before or after hematopoietic stem cell transplantation (HSCT) is known as a predictor of poor outcome in patients with acute myeloid (AML) or lymphoblastic (ALL) leukemia. When performed with multiparameter flow cytometry (MFC), assessment of residual leukemic cells after HSCT may be limited by therapy-induced shifts in the immunophenotype (e.g., loss of surface molecules used for therapeutic targeting). However, in such cases, questionable cells can be isolated and tested for hematopoietic chimerism to clarify their origin.

Methods: Questionable cell populations were detected during the MFC-based MRD monitoring of 52 follow-up bone marrow samples from 37 patients diagnosed with T cell neoplasms (n =14), B cell precursor ALL (n = 16), AML (n = 7). These cells (suspected leukemic or normal) were isolated by flow cell sorting and tested for hematopoietic chimerism by RTQ-PCR.

Results: The origin of cells was successfully identified in 96.15% of cases (n = 50), which helped to validate the results of MFC-based MRD monitoring.

Conclusions: We believe that a combination of MFC, cell sorting, and chimerism testing may help confirm or disprove MRD presence in complicated cases after HSCT.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cyto.b.21982DOI Listing
December 2020

T-cell tracking, safety, and effect of low-dose donor memory T-cell infusions after αβ T cell-depleted hematopoietic stem cell transplantation.

Bone Marrow Transplant 2021 Apr 17;56(4):900-908. Epub 2020 Nov 17.

Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.

The delayed recovery of adaptive immunity underlies transplant-related mortality (TRM) after αβ T cell-depleted hematopoietic stem cell transplantation (HSCT). We tested the use of low-dose memory donor lymphocyte infusions (mDLIs) after engraftment of αβ T cell-depleted grafts.A cohort of 131 pediatric patients (median age 9 years) were grafted with αβ T cell-depleted products from either haplo (n = 79) or unrelated donors (n = 52). After engraftment, patients received mDLIs prepared by CD45RA depletion. Cell dose was escalated monthly from 25 × 10 to 100 × 10/kg (haplo) and from 100 × 10 to 300 × 10 /kg (MUD). In a subcohort of 16 patients, T-cell receptor (TCR) repertoire profiling with deep sequencing was used to track T-cell clones and to evaluate the contribution of mDLI to the immune repertoire.In total, 343 mDLIs were administered. The cumulative incidence (CI) of grades II and III de novo acute graft-versus-host disease (aGVHD) was 5% and 2%, respectively, and the CI of chronic graft-versus-host disease was 7%. Half of the patients with undetectable CMV-specific T cells before mDLI recovered CMV-specific T cells. TCR repertoire profiling confirmed that mDLI-derived T cells significantly contribute to the TCR repertoire up to 1 year after HSCT and include persistent, CMV-specific T-cell clones.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41409-020-01128-2DOI Listing
April 2021

Quantification of NG2-positivity for the precise prediction of KMT2A gene rearrangements in childhood acute leukemia.

Genes Chromosomes Cancer 2021 Feb 20;60(2):88-99. Epub 2020 Nov 20.

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.

It has long been known that there is a link between neuron glial antigen 2 (NG2) surface expression and KMT2A gene rearrangements in acute leukemia (AL). However, the exact levels of NG2 positivity that predict the presence of KMT2A rearrangement are not known. The current study focuses on a cohort of 505 pediatric AL patients who showed any level of positive NG2 expression (greater than 1% of cells) for whom comprehensive genetic data were available. NG2 expression was measured as either the percentage of positive cells or the number of molecules on the cell surface. KMT2A gene rearrangements were identified by FISH. The fusion partner was detected with RT-PCR, LDI-PCR or anchored multiplex PCR followed by high-throughput sequencing. KMT2A-positive samples comprised a substantial proportion of the NG2-positive cohort (180 of 505, 36%), with a total of 19 different types of translocation. Despite its occurrence in other AL genetic subgroups, NG2 expression was significantly increased in AL patients with KMT2A rearrangements in terms of both the cell percentage and number of molecules per cell. The threshold levels (TL) for NG2-positivity were established by ROC analysis of the whole cohort and separately for children less than 1 years old and older with lymphoblastic (ALL) and myeloid (AML) leukemia. The lowest TL was defined in infants with ALL (7%), while in older children, the threshold was higher (12%). In AML patients, the situation was reversed, with 28% NG2-positivity in infants and 14% in patients >1 year old. The defined TLs resulted in improved diagnostic performance compared to the conventional thresholds of 10% and 20% for all patient groups.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/gcc.22915DOI Listing
February 2021

Treosulfan-Based Conditioning Regimen in Haematopoietic Stem Cell Transplantation with TCRαβ/CD19 Depletion in Nijmegen Breakage Syndrome.

J Clin Immunol 2020 08 30;40(6):861-871. Epub 2020 Jun 30.

Department of Hematopoietic Stem Cell Transplantation, Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela str, Moscow, Russia, 117997.

Nijmegen breakage syndrome (NBS) is a DNA repair disorder characterized by combined immunodeficiency and a high predisposition to malignancies. HSCT appears to cure immunodeficiency, but remains challenging due to limited experience in long-term risks of transplant-associated toxicity and malignancies. Twenty NBS patients received 22 allogeneic HSCTs with TCRαβ/CD19+ graft depletion with fludarabine 150 mg/m, cyclophosphamide 20-40 mg/kg and thymoglobulin 5 mg/kg based conditioning regimens (CRs). Twelve patients additionally received low-dose busulfan 4 mg/kg (Bu group) and 10 patients (including 2 recipients of a second HSCT) treosulfan (Treo group) 30 g/m. Overall and event-free survival were 0.75 vs 1 (p = 0.16) and 0.47 vs 0.89 (p = 0.1) in the Bu and Treo groups, respectively. In the Bu group, four patients developed graft rejection, and three died: two died of de novo and relapsed lymphomas and one died of adenoviral hepatitis. The four living patients exhibited split chimerism with predominantly recipient myeloid cells and predominantly donor T and B lymphocytes. In Treo group, one patient developed rhabdomyosarcoma. There was no difference in the incidence of GVHD, viral reactivation, or early toxicity between either group. Low-dose Bu-containing CR in NBS leads to increased graft failure and low donor myeloid chimerism. Treo-CR followed by TCRαβ/CD19-depleted HSCT demonstrates a low level of early transplant-associated toxicity and enhanced graft function with stable donor chimerism.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10875-020-00811-9DOI Listing
August 2020

BCG-Related Inflammatory Syndromes in Severe Combined Immunodeficiency After TCRαβ+/CD19+ Depleted HSCT.

J Clin Immunol 2020 05 6;40(4):625-636. Epub 2020 May 6.

Department of Immunology, Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, 1, Samory Mashela str., Moscow, Russia, 117997.

Introduction: The live-attenuated BCG vaccine is known to cause disseminated Mycobacterium bovis infection in patients with severe combined immunodeficiency (SCID). However, BCG-related post-hematopoietic stem cell transplantation (HSCT) immune reconstitution inflammatory syndromes, similar to those described in patients with HIV infections, are less-known complications of SCID.

Patients And Methods: We reported on 22 BCG-vaccinated SCID patients who had received conditioned allogeneic HSCT with TCRαβ+/CD19+ graft depletion. All BCG-vaccinated patients received anti-mycobacterial therapy pre- and post-HSCT. Post-transplant immunosuppression consisted of tacrolimus in 10 patients and of 8 mg/kg tocilizumab (d-1, + 14, + 28) and 10 mg/kg abatacept (d-1, + 5, + 14, + 28) in 11 patients.

Results: Twelve patients, five of whom had BCG infection prior to HSCT, developed BCG-related inflammatory syndromes (BCG-IS). Five developed early BCG-IS with the median time of manifestation 11 days after HSCT, corresponding with a dramatic increase of CD3+TCRγδ+ in at least two patients. Early BCG-IS was noted in only one out of 11 patients who received tocilizumab/abatacept and 4 out of 11 patients who did not. Seven patients developed late BCG-IS which corresponded to T cell immune recovery; at the time of manifestation (median 4.2 months after HSCT), the median number of CD3+ cells was 0.42 × 10/ and CD3+CD4+ cells 0.27 × 10/l. In all patients, late BCG-IS was controlled with IL-1 or IL-6 inhibitors.

Conclusion: BCG-vaccinated SCID patients undergoing allogeneic HSCT with TCRαβ+/CD19+ graft depletion are at an increased risk of early and late BCG-IS. Anti-inflammatory therapy with IL-1 and IL-6 blockade is efficient in the prevention of early and treatment of late BCG-IS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10875-020-00774-xDOI Listing
May 2020

Control of graft-versus-host disease with rabbit anti-thymocyte globulin, rituximab, and bortezomib in TCRαβ/CD19-depleted graft transplantation for leukemia in children: a single-center retrospective analysis of two GVHD-prophylaxis regimens.

Pediatr Transplant 2020 02 3;24(1):e13594. Epub 2019 Nov 3.

Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia.

Both acute GVHD and chronic GVHD remain the leading cause of morbidity and death after allogeneic HSCT. We conducted a retrospective analysis comparing two GVHD-prophylaxis regimens: 35 patients received "Regimen 1" (horse ATG, tacrolimus, and methotrexate) and 46 "Regimen 2" (rabbit ATG, rituximab, and peritransplant bortezomib). All 81 patients with a median age of 9 (0.6-23) years with ALL (n = 31) or AML (n = 50) in complete remission received TCRαβ/CD19-depleted transplants between May 2012 and October 2016, from 40 HLA-matched unrelated and 41 haploidentical donors. After a median follow-up of 3.9 years, the CI of acute GVHD II-IV was 15% (95% CI: 7-30) in the "Regimen 2" group and 34% (95% CI: -54) in the "Regimen 1" group, P = .05. "Regimen 2" was also more effective in the prevention of chronic GVHD; the CI at 1 year after HSCT was 7% (95% CI: 2-19) vs 31% (95% CI: 19-51), P = .005. The CI of relapse at 3 years adjusted for the GVHD-prophylaxis regimen groups 31% (95% CI: 19-51) for the "Regimen 1" vs 21% (95% CI: 11-37) for the "Regimen 2", P = .3. The retrospective observation suggests that the use of the rATG, rituximab, and bortezomib was associated with significantly lower rate of GVHD without the loss of anti-leukemic activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/petr.13594DOI Listing
February 2020

High-throughput sequencing of T-cell receptor alpha chain clonal rearrangements at the DNA level in lymphoid malignancies.

Br J Haematol 2020 03 6;188(5):723-731. Epub 2019 Oct 6.

Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.

Rearrangements of T- and B-cell receptor (TCR and BCR) genes are useful markers for clonality assessment as well as for minimal residual disease (MRD) monitoring during the treatment of haematological malignancies. Currently, rearrangements of three out of four TCR and all BCR loci are used for this purpose. The fourth TCR gene, TRA, has not been used so far due to the lack of a method for its rearrangement detection in genomic DNA. Here we propose the first high-throughput sequencing based method for the identification of clonal TRA gene rearrangements at the DNA level. The method is based on target amplification of the rearranged TRA locus using an advanced multiplex polymerase chain reaction system and high-throughput sequencing, and has been tested on DNA samples from peripheral blood of healthy donors. Combinations of all functional V- and J-segments were detected, indicating the high sensitivity of the method. Additionally, we identified clonal TRA rearrangements in 57 out of 112 tested DNA samples of patients with various T-lineage lymphoproliferative disorders. The method fills the existing gap in utilizing the TRA gene for a wide range of studies, including clonality assessment, MRD monitoring and clonal evolution analysis in different lymphoid malignancies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/bjh.16230DOI Listing
March 2020

Mismatched related vs matched unrelated donors in TCRαβ/CD19-depleted HSCT for primary immunodeficiencies.

Blood 2019 11;134(20):1755-1763

Department of Hematopoietic Stem Cell Transplantation.

TCRαβ+/CD19+ graft depletion effectively prevents graft-versus-host disease (GVHD). In the current study, we compared the outcomes of hematopoietic stem cell transplantation (HSCT) with TCRαβ+/CD19+ depletion from matched unrelated donors (MUDs) and mismatched related donors (MMRDs) in patients with primary immunodeficiency (PID). A total of 98 pediatric patients with various PIDs underwent HSCT with TCRαβ+/CD19+ graft depletion from MUDs (n = 75) and MMRDs (n = 23). All patients received a fludarabine-/treosulfan-based conditioning regimen, with 73 also receiving a second alkylating agent. For GVHD prophylaxis, all but 2 received serotherapy (antithymocyte globulin) before HSCT and a short course of posttransplant immunosuppression. Neutrophil and platelet engraftment in both the MUD and MMRD groups occurred on days 14 and 13, respectively. The incidence of secondary graft failure was 0.16 and 0.17 (P = .85), respectively. The cumulative incidence of acute GVHD grade 2 to 4 was 0.17 in the MUD group and 0.22 in the MMRD group (P = .7). The incidence of cytomegalovirus (CMV) viremia was 0.5 in the MUD group and 0.6 in the MMRD group (P = .35). The frequency of CMV disease was high (17%), and the most common manifestation was retinitis. The kinetics of immune recovery was similar in both groups. The overall survival was 0.86 in the MUD group and 0.87 in the MMRD group (P = .95). In our experience, there was no difference in the outcomes of HSCT performed from MUD and MMRD. Hence, given the immediate availability of donors, in the absence of HLA-identical siblings, HSCT with TCRαβ+/CD19+ graft depletion from MMRDs can be considered as the first choice in patients with PID.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood.2019001757DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856988PMC
November 2019

Clinical applications of donor lymphocyte infusion from an HLA-haploidentical donor: consensus recommendations from the Acute Leukemia Working Party of the EBMT.

Haematologica 2020 01 19;105(1):47-58. Epub 2019 Sep 19.

Dept. of Bone Marrow Transplantation and Onco-Hematology, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland.

Donor lymphocyte infusion has been used in the management of relapsed hematologic malignancies after allogeneic hematopoietic cell transplantation. It can eradicate minimal residual disease or be used to rescue a hematologic relapse, being able to induce durable remissions in a subset of patients. With the increased use of haploidentical hematopoietic cell transplantation, there is renewed interest in the use of donor lymphocytes to either treat or prevent disease relapse post transplant. Published retrospective and small prospective studies have shown encouraging results with therapeutic donor lymphocyte infusion in different haploidentical transplantation platforms. In this consensus paper, finalized on behalf of the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation, we summarize the available evidence on the use of donor lymphocyte infusion from haploidentical donor, and provide recommendations on its therapeutic, pre-emptive and prophylactic use in clinical practice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3324/haematol.2019.219790DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939532PMC
January 2020

Vemurafenib for Refractory Multisystem Langerhans Cell Histiocytosis in Children: An International Observational Study.

J Clin Oncol 2019 11 12;37(31):2857-2865. Epub 2019 Sep 12.

Centre Hospitalier Universitaire de Lille, Lille, France.

Purpose: Off-label use of vemurafenib (VMF) to treat mutation-positive, refractory, childhood Langerhans cell histiocytosis (LCH) was evaluated.

Patients And Methods: Fifty-four patients from 12 countries took VMF 20 mg/kg/d. They were classified according to risk organ involvement: liver, spleen, and/or blood cytopenia. The main evaluation criteria were adverse events (Common Terminology Criteria for Adverse Events [version 4.3]) and therapeutic responses according to Disease Activity Score.

Results: LCH extent was distributed as follows: 44 with positive and 10 with negative risk organ involvement. Median age at diagnosis was 0.9 years (range, 0.1 to 6.5 years). Median age at VMF initiation was 1.8 years (range, 0.18 to 14 years), with a median follow-up of 22 months (range, 4.3 to 57 months), whereas median treatment duration was 13.9 months (for 855 patient-months). At 8 weeks, 38 complete responses and 16 partial responses had been achieved, with the median Disease Activity Score decreasing from 7 at diagnosis to 0 ( < .001). Skin rash, the most frequent adverse event, affected 74% of patients. No secondary skin cancer was observed. Therapeutic plasma VMF concentrations (range, 10 to 20 mg/L) seemed to be safe and effective. VMF discontinuation for 30 patients led to 24 LCH reactivations. The blood allele load, assessed as circulating cell-free DNA, decreased after starting VMF but remained positive (median, 3.6% at diagnosis, and 1.6% during VMF treatment; < .001) and was associated with a higher risk of reactivation at VMF discontinuation. None of the various empirical therapies (hematopoietic stem-cell transplantation, cladribine and cytarabine, anti-MEK agent, vinblastine, etc) used for maintenance could eradicate the clone.

Conclusion: VMF seemed safe and effective in children with refractory -positive LCH. Additional studies are needed to find effective maintenance therapy approaches.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1200/JCO.19.00456DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6823889PMC
November 2019

Correction: Unique CDR3 epitope targeting by CAR-T cells is a viable approach for treating T-cell malignancies.

Leukemia 2019 Sep;33(9):2341

Translational Medicine Research Center (TMRC), School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.

In the original version of this article the author name Xiaolei Chen was published incorrectly. This has been corrected to Xiao Lei Chen.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41375-019-0484-yDOI Listing
September 2019

Outcome of αβ T cell-depleted transplantation in children with high-risk acute myeloid leukemia, grafted in remission.

Bone Marrow Transplant 2020 01 15;55(1):256-259. Epub 2019 Apr 15.

Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Medical Research Сenter of Pediatric Hematology, Oncology and Immunology, Samory Mashela street, 1, Moscow, 117997, Russia.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41409-019-0531-3DOI Listing
January 2020

αβ T Cell-Depleted Haploidentical Hematopoietic Stem Cell Transplantation without Antithymocyte Globulin in Children with Chemorefractory Acute Myelogenous Leukemia.

Biol Blood Marrow Transplant 2019 05 21;25(5):e179-e182. Epub 2019 Jan 21.

Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia. Electronic address:

We evaluated the outcome of αβ T cell-depleted haploidentical hematopoietic stem cell transplantation (HSCT) in a cohort of children with chemorefractory acute myelogenous leukemia (AML). Twenty-two patients with either primary refractory (n = 10) or relapsed refractory (n = 12) AML in active disease status received a transplant from haploidentical donors. The preparative regimen included cytoreduction with fludarabine and cytarabine and subsequent myeloablative conditioning with treosulfan and thiotepa. Antithymocyte globulin was substituted with tocilizumab in all patients and also with abatacept in 10 patients. Grafts were peripheral blood stem cells engineered by αβ T cell and CD19 depletion. Post-transplantation prophylactic therapy included infusion of donor lymphocytes, composed of a CD45RA-depleted fraction with or without a hypomethylating agent. Complete remission was achieved in 21 patients (95%). The cumulative incidence of grade II-IV acute graft-versus-host disease (GVHD) was 18%, and the cumulative incidence of chronic GVHD was 23%. At 2 years, transplantation-related mortality was 9%, relapse rate was 42%, event-free survival was 49%, and overall survival was 53%. Our data suggest that αβ T cell-depleted haploidentical HSCT provides a reasonable chance of long-term survival in a cohort of children with chemorefractory AML and creates a solid basis for further improvement.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbmt.2019.01.023DOI Listing
May 2019

Acute myeloid leukemia with t(10;11)(p11-12;q23.3): Results of Russian Pediatric AML registration study.

Int J Lab Hematol 2019 Apr 9;41(2):287-292. Epub 2019 Jan 9.

Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.

Introduction: Translocations involving the KMT2A gene (also known as MLL) are frequently diagnosed in pediatric acute leukemia cases with either lymphoblastic or myeloid origin. KMT2A is translocated to multiple partner genes, including MLLT10/AF10 localizing at chromosomal band 10p12. KMT2A-MLLT10 is one of the common chimeric genes diagnosed in acute leukemia with KMT2A rearrangement (8%), especially in acute myeloid leukemia (AML; 18%). MLLT10 is localized in very close proximity to two other KMT2A partner genes at 10p11-12-NEBL and ABI1, so they could not be distinguished by conventional cytogenetics.

Methods: In this work, we present a cohort of 28 patients enrolled into Russian Pediatric AML registration study carrying rearrangements between chromosomal regions 11q23.3 and 10p11-12. G-banding, FISH, reverse transcription PCR, and long-distance inverse PCR were used to characterize the KMT2A gene rearrangements in these patients.

Results: We demonstrate that 25 patients harbor the KMT2A-MLLT10 rearrangement, while three patients show the rare KMT2A rearrangements (2× KMT2A-NEBL; 1× KMT2A-ABI1).

Conclusions: Therefore, the combination of cytogenetic and molecular genetic methods is of high importance in diagnosing cases with t(10;11)(p11-12;q23.3).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/ijlh.12969DOI Listing
April 2019

A case of pediatric acute myeloid leukemia with t(11;16)(q23;q24) leading to a novel KMT2A-USP10 fusion gene.

Genes Chromosomes Cancer 2018 10 14;57(10):522-524. Epub 2018 Aug 14.

Laboratory of Cytogenetics and Molecular Genetics, Dmitry Rogachev Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia.

We present a leukemia case that exhibits a chromosomal translocation t(11;16)(q23;q23), which results in the expression of a novel KMT2A fusion gene. This novel fusion, KMT2A-USP10, was found in a relapse of acute myeloid leukaemia M5a. USP10 belongs to a protein family that deubiquitinates a distinct set of target proteins, and thus, increases the steady state protein levels of its target subproteome. One of the USP10 targets is TP53. Wildtype TP53 is usually rescued from proteasomal degradation by USP10. As most KMT2A leukemias display wildtype p53 alleles, one might argue that the disruption of an USP10 allele can be classified as a pro-oncogenic event.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/gcc.22646DOI Listing
October 2018

Outcome of haematopoietic stem cell transplantation in dyskeratosis congenita.

Br J Haematol 2018 10 9;183(1):110-118. Epub 2018 Jul 9.

Haemato-Immunology Department, Robert Debre Hospital, and Paris-Diderot University, Paris, France.

Dyskeratosis congenita (DC) is a genetic multisystem disorder with frequent involvement of the bone marrow. Haematopoietic stem cell transplantation (HSCT) is the only definitive cure to restore haematopoiesis, even though it cannot correct other organ dysfunctions. We collected data on the outcome of HSCT in the largest cohort of DC (n = 94) patients ever studied. Overall survival (OS) and event-free survival (EFS) at 3 years after HSCT were 66% and 62%, respectively. Multivariate analysis showed better outcomes in patients aged less than 20 years and in patients transplanted from a matched, rather than a mismatched, donor. OS and EFS curves tended to decline over time. Early lethal events were infections, whereas organ damage and secondary malignancies appeared afterwards, even a decade after HSCT. A non-myeloablative conditioning regimen appeared to be most advisable. Organ impairment present before HSCT seemed to favour the development of chronic graft-versus-host disease and T-B immune deficiency appeared to enhance pulmonary fibrosis. According to the present data, HSCT in DC is indicated in cases of progressive marrow failure, whereas in patients with pre-existing organ damage, this should be carefully evaluated. Further efforts to investigate treatment alternatives to HSCT should be encouraged.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/bjh.15495DOI Listing
October 2018

A Conditioning Regimen with Plerixafor Is Safe and Improves the Outcome of TCRαβ and CD19 Cell-Depleted Stem Cell Transplantation in Patients with Wiskott-Aldrich Syndrome.

Biol Blood Marrow Transplant 2018 07 14;24(7):1432-1440. Epub 2018 Mar 14.

Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Center for Pediatric Hematology, Oncology, and Immunology, Moscow, Russia.

Our initial experience with hematopoietic stem cell transplantation (HSCT) from a matched unrelated donor (MUD; n = 12) or a haploidentical related donor (n = 6) with T cell receptor (TCR)αβ/CD19 graft depletion in patients with Wiskott-Aldrich syndrome (WAS) (n = 18) showed a dramatic decrease in the incidence of graft-versus-host disease (GVHD) and transplantation-related mortality, with an increased overall survival (OS) of 88.9%. Unfortunately, the treatment was associated with mixed myeloid donor chimerism and secondary graft dysfunction (severe thrombocytopenia, n = 2; graft rejection, n = 5). To improve the outcome, we hypothesized that the addition of G-CSF and plerixafor to the conditioning chemotherapy would result in more complete donor stem cell engraftment. This trial was registered at www.clinicaltrials.gov (NCT03019809). A study group of patients with WAS (n = 16) underwent TCRαβ/CD19-depleted HSCT (MUD, n = 6; haploidentical, n = 10). The conditioning regimen was treosulfan-fludarabine-rabbit antithymocyte globulin-melphalan (or thiophosphamide in 1 patient) with G-CSF (10 µg/kg/day for 5 days starting on day -8) and plerixafor (240 µg/kg/day for 3 days starting on day -6). The clinical outcomes in this study were compared to those in a historical dataset (n = 18). No patients had grade III/IV acute GVHD in either the study or the historical control group. Importantly, in the patients with WAS, there was no statistical significance in OS between those who underwent HSCT from haploidentical donors and those who underwent HSCT from MUDs (93.8% versus 88.5%; P = .612). All patients in the study group had full donor chimerism in whole blood and in the CD3 compartments. The OS was 93.8%, and there were no cases of graft dysfunction. This study demonstrates the efficacy of adding G-CSF/plerixafor to the conditioning regimen before HSCT with TCRαβ/C D19 graft depletion in patients with WAS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbmt.2018.03.006DOI Listing
July 2018

Molecular characteristic of acute leukemias with t(16;21)/FUS-ERG.

Ann Hematol 2018 Jun 9;97(6):977-988. Epub 2018 Feb 9.

Dmitry Rogachev Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Samora Mashela str., 1, Moscow, 117997, Russia.

T(16;21)(p11;q22)/FUS-ERG is a rare but recurrent translocation in acute leukemias and in some types of solid tumors. Due to multiple types of FUS-ERG transcripts, PCR-based minimal residual disease detection is impeded. In this study, we evaluated a cohort of pediatric patients with t(16;21)(p11;q22)/FUS-ERG and revealed fusion gene breakpoints. We implemented next-generation sequencing (NGS) on long PCR amplicons for the detection of fusion genes with unknown partners or DNA breakpoints. That allowed us to describe different fusion variants of FUS/ERG in different patients and to detect MRD on both RNA and DNA levels. We also found several accompanying mutations in epigenetic regulators (DNMT3A, ASXL1, BCOR) by targeted NGS approach in AML cases. These mutations preceded full transformation by t(16;21)(p11;q22)/FUS-ERG and allowed us to trace clonal evolution on all steps of therapy. As a casual observation, the ASXL1 mutation was found in the unrelated donor hematopoietic cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00277-018-3267-zDOI Listing
June 2018

Low-dose donor memory T-cell infusion after TCR alpha/beta depleted unrelated and haploidentical transplantation: results of a pilot trial.

Bone Marrow Transplant 2018 03 21;53(3):264-273. Epub 2017 Dec 21.

Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia.

Recovery of immunity is delayed in recipients of T-depleted grafts. Adoptive transfer of memory T-cells may improve immune response to common pathogens. A cohort of 53 patients with malignant (n = 36) and non-malignant conditions (n = 17) received TCR alpha/beta depleted grafts from haploidentical (n = 25) or MUD (n = 28) donors. Donor lymphocytes were depleted of CD45RA-positive cells. At a median of 48 days after transplantation, patients received DLI at 25 × 10/kg CD3 cells from haploidentical or 100 × 10/kg CD3 from MUD donors. Up to 3 doses of donor lymphocytes were administered at monthly intervals, escalating to 100 × 10/kg in haploidentical transplants and 300 × 10/kg in MUD transplants. At a median follow-up of 23 months, the cumulative incidence of de novo acute GVHD after DLI is 2% (1 of 43), while the rate of reactivation of preexisting aGVHD was 50% (5 of 10). The transplant-related mortality is 6%. The overall survival rates are 80% and 88% in malignant and non-malignant conditions, respectively. Among patients with absent CMV-specific immune reactivity at baseline (n = 31) expansion of CMV-specific T-cells was demonstrated in 20 (64.5%) within 100 days. Infusions of low dose donor memory T-lymphocytes are safe and constitute a simple measure to prevent infections in the setting of alpha/beta T cell-depleted transplantation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41409-017-0035-yDOI Listing
March 2018

Risk Factors for and the Clinical Impact of Cytomegalovirus and Epstein-Barr Virus Infections in Pediatric Recipients of TCR-α/β- and CD19-Depleted Grafts.

Biol Blood Marrow Transplant 2017 Mar 27;23(3):483-490. Epub 2016 Dec 27.

Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev Federal Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia. Electronic address:

Alpha/beta T cell and CD19 depletion are used to improve the outcomes of hematopoietic stem cell transplantation (HSCT). We evaluated the burden of cytomegalovirus (CMV) and Epstein-Barr virus (EBV) in pediatric patients after this HSCT type. A cohort of 182 patients with malignant (n = 114) or nonmalignant (n = 68) disorders was transplanted from either matched unrelated (n = 124) or haploidentical (n = 58) donors. The cumulative incidence of CMV and EBV viremia were 51% and 33%, respectively. Acute graft-versus-host disease (GVHD) grades II to IV, D-/R+ serology, and malignant HSCT indications were associated with increased risk of CMV viremia. CMV disease developed in 10 patients (6%). The occurrence of CMV viremia was not associated with inferior outcomes. Acute GVHD grade ≥ II was the only factor significantly associated with an increased risk of EBV viremia. Rituximab significantly decreased the rate of EBV reactivation in a subgroup that received a higher B cell dose in the graft. The rate of EBV-associated disease was .5%, and EBV viremia did not affect survival. TCR-α/β and CD19 depletion are associated with a significant rate of CMV viremia that does not affect survival. The hazard of EBV post-transplant lymphoproliferative disease (PTLD) is eliminated by the combination of CD19 depletion and rituximab.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbmt.2016.12.635DOI Listing
March 2017

Single-Center Experience of Unrelated and Haploidentical Stem Cell Transplantation with TCRαβ and CD19 Depletion in Children with Primary Immunodeficiency Syndromes.

Biol Blood Marrow Transplant 2015 Nov 15;21(11):1955-62. Epub 2015 Jul 15.

Department of Hematopoietic Stem Cell Transplantation, Dmitry Rogachev Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.

The transplantation of stem cells from a matched unrelated donor (MUD) or a haploidentical mismatched related donor (MMRD) is a widely used variant of curative treatment for patients with primary immunodeficiency (PID). Currently, different strategies are used to reduce the risk of post-transplant complications and enhance immune reconstitution. We report the preliminary results of MUD and MMRD transplantation with TCRαβ/CD19 depletion in patients with PID (trial registered at www.clinicaltrials.gov as NCT02327351). Thirty-seven PID patients (median age, 2.6 years; range, .2 to 17) were transplanted from MUDs (n = 27) or haploidentical MMRDs (n = 10) after TCRαβ(+)/CD19(+) graft depletion. The median numbers of CD34(+) and TCRαβ(+) cells in the graft were 11.7 × 10(6)/kg and 10.6 × 10(3)/kg, respectively. Acute graft-versus-host disease (GVHD) was observed in 8 patients (22%), without a statistically significant difference between MUDs and MMRDs; 7 of these patients had grade II acute GVHD and responded to first-line therapy, whereas 1 patient had grade IV acute GVHD with transformation to extensive chronic GVHD. Primary and secondary graft failure (nonengraftment or rejection) was observed in 10 patients (27%), 9 of whom were treated with 1 alkylating agent in the conditioning regimen. All these patients were successfully retransplanted with different rescue protocols. Preliminary data on immune reconstitution were very encouraging. Most patients had significant numbers of T lymphocytes detected on the first assessment (day +30) and more than 500 T cells/μL, on day +120. Based on our preliminary data, no significant difference was seen between MMRD and MUD hematopoietic stem cell transplantation (HSCT). With a median follow-up period of 15 months, the cumulative probabilities of overall patient survival and transplant-related mortality were 96.7% and 3.3%, respectively. Based on the results, the ability to control the main post-transplant complications and the immune reconstitution rates are the main factors leading to successful outcome in patients with PID after TCRαβ(+)-depleted HSCT.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbmt.2015.07.008DOI Listing
November 2015

Clinical and genomic heterogeneity of Diamond Blackfan anemia in the Russian Federation.

Pediatr Blood Cancer 2015 Sep 6;62(9):1597-600. Epub 2015 May 6.

Dmitry Rogachev Federal Clinical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia.

Background: Diamond Blackfan anemia (DBA) is a genetically and clinically heterogeneous ribosomopathy and inherited bone marrow failure syndrome characterized by anemia, reticulocytopenia, and decreased erythroid precursors in the bone marrow with an increased risk of malignancy and, in approximately 50%, physical abnormalities.

Methods: We retrospectively analyzed clinical data from 77 patients with DBA born in the Russian Federation from 1993 to 2014. In 74 families there was one clinically affected individual; in only three instances a multiplex family was identified. Genomic DNA from 57 DBA patients and their first-degree relatives was sequenced for mutations in RPS19, RPS10, RPS24, RPS26, RPS7, RPS17, RPL5, RPL11, RPL35a, and GATA1.

Results: Severe anemia presented before 8 months of age in all 77 patients; before 2 months in 61 (78.2%); before 4 months in 71 (92.2%). Corticosteroid therapy was initiated after 1 year of age in the majority of patients. Most responded initially to steroids, while 5 responses were transient. Mutations in RP genes were detected in 35 of 57 patients studied: 15 in RPS19, 6 in RPL5, 3 in RPS7, 3 each in RPS10, RPS26, and RPL11 and 1 each in RPS24 and RPL35a; 24 of these mutations have not been previously reported. One patient had a balanced chromosomal translocation involving RPS19. No mutations in GATA1 were found.

Conclusion: In our cohort from an ethnically diverse population the distribution of mutations among RP genes was approximately the same as was reported by others, although within genotypes most of the mutations had not been previously reported.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/pbc.25534DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4515145PMC
September 2015

A new variant of KMT2A(MLL)-FLNA fusion transcript in acute myeloid leukemia with ins(X;11)(q28;q23q23).

Cancer Genet 2015 Apr 7;208(4):148-51. Epub 2015 Mar 7.

Federal Scientifc Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.

The KMT2A gene (previously known as MLL) located at 11q23 is often involved in recurrent chromosomal translocations that lead to the development of acute leukemia, particularly in infants. Acute leukemias with KMT2A rearrangements have different prognoses, which depend on the partner gene involved in the translocation. The detection of all possible types of KMT2A gene rearrangements is of key importance for the identification of biological subgroups, which may differ in clinical outcome. In this report, we describe a case study of a 7-month-old boy who presented with AML-M4; however, no obvious 11q23 rearrangement was detected in the analyzed karyotype. Fluorescence in situ hybridization evaluation showed a nonstandard signal distribution in blast cells, corresponding to the presence of two KMT2A copies and one additional copy of 5'-KMT2A inserted into the long arm of the X chromosome (ins(X;11)(q28;q23q23)). Subsequent molecular analysis showed a novel variant form of the previously described KMT2A-FLNA fusion gene, in which the KMT2A intron 9 is fused to the FLNA exon 16.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cancergen.2015.03.001DOI Listing
April 2015