Publications by authors named "Michael D Weiner"

4 Publications

  • Page 1 of 1

Bilayer compositional asymmetry influences the nanoscopic to macroscopic phase domain size transition.

Chem Phys Lipids 2020 10 15;232:104972. Epub 2020 Sep 15.

Cornell University Department of Molecular Biology and Genetics, Room 201 215 Tower Rd. Ithaca, New York, 14853, United States. Electronic address:

The eukaryotic plasma membrane (PM) exhibits lipid mixing heterogeneities known as lipid rafts. These lipid rafts, the result of liquid-liquid phase separation, can be modeled by coexisting liquid ordered (Lo) and liquid disordered (Ld) domains. Four-lipid component systems with a high-melting lipid, a nanodomain-inducing low-melting lipid, a macrodomain-inducing low-melting lipid, and cholesterol (chol) can give rise to domains of different sizes. These four-component systems have been characterized in experiments, yet there are few studies that model the asymmetric distribution of lipids actually found in the PM. We used molecular dynamics (MD) simulations to analyze the transition from nanoscopic to macroscopic domains in symmetric and in asymmetric model membranes. Using coarse-grained MD simulations, we found that asymmetry promotes macroscopic domain growth in a case where symmetric systems exhibit nanoscopic domains. Also, macroscopic domain formation in symmetric systems is highly dependent on registration of like phases in the cytoplasmic and exoplasmic leaflets. Using united-atom MD simulations, we found that symmetric Lo domains are only slightly more ordered than asymmetric Lo domains. We also found that large Lo domains in our asymmetric systems induce a slight chain ordering in the apposed cytoplasmic regions. The chol fractions of phase-separated Lo and Ld domains of the exoplasmic leaflet were unchanged whether the system was symmetric or asymmetric.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemphyslip.2020.104972DOI Listing
October 2020

Molecular Dynamics Simulations Reveal Leaflet Coupling in Compositionally Asymmetric Phase-Separated Lipid Membranes.

J Phys Chem B 2019 05 1;123(18):3968-3975. Epub 2019 May 1.

The eukaryotic plasma membrane has an asymmetric distribution of its component lipids. Rafts that result from liquid-liquid phase separation are a feature of its exoplasmic leaflet, but how these exoplasmic leaflet domains are coupled to the cytoplasmic leaflet is not understood. These rafts can be studied in model membranes of three-component mixtures that produce coexisting liquid ordered (Lo) and liquid disordered (Ld) domains. We conducted all-atom molecular dynamics simulations of compositionally asymmetric lipid bilayers that reflect a more realistic model of the plasma membrane. One leaflet contained phase-separated domains with phosphatidylcholine and cholesterol, representing the exoplasmic leaflet, whereas the other contained phosphatidylethanolamine, phosphatidylserine, and cholesterol, which are the predominant components of the cytoplasmic leaflet. Inspired by findings of domain alignment across the two leaflets in compositionally symmetric model membranes, we examined the coupling between the two leaflets to see how the single-phase cytoplasmic leaflet would respond to phase separation in the other leaflet and if information could be communicated across the membrane. We found the region of the single-phase leaflet apposing the Lo domain to be slightly more ordered and thicker than the region apposing the Ld domain. The region across from the Lo domain is somewhat enriched in cholesterol and significantly depleted of polyunsaturated lipids.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.9b03488DOI Listing
May 2019

Presence and Role of Midplane Cholesterol in Lipid Bilayers Containing Registered or Antiregistered Phase Domains.

J Phys Chem B 2018 08 21;122(34):8193-8200. Epub 2018 Aug 21.

Three-component lipid mixtures can produce coexisting liquid ordered and liquid disordered phases, a model for eukaryotic plasma membrane rafts. In compositionally symmetric bilayers with two phase-separated leaflets, phase domains of the two leaflets may align through registration, where domains are found across from domains of the same phase, or else antiregistration, where domains are found across from domains of the opposite phase. This alignment could serve as a method of information communication across the plasma membrane. We used coarse-grained molecular dynamics simulations to study ternary mixtures of a high-melting-temperature phospholipid, a low-melting-temperature phospholipid, and cholesterol. We found a significant presence of cholesterol molecules at the bilayer midplane rather than in a leaflet in some systems, corresponding to a lack of registration. Increasing the length of the acyl chains from 16 to 24 carbons in high-melting-temperature phospholipids or increasing the concentration of cholesterol from 20 to 35 mol % in the bilayer produced a transition from registration to antiregistration and gave rise to significant populations of midplane cholesterol.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.8b03949DOI Listing
August 2018

Line Tension Controls Liquid-Disordered + Liquid-Ordered Domain Size Transition in Lipid Bilayers.

Biophys J 2017 Apr;112(7):1431-1443

Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York. Electronic address:

To better understand animal cell plasma membranes, we studied simplified models, namely four-component lipid bilayer mixtures. Here we describe the domain size transition in the region of coexisting liquid-disordered (Ld) + liquid-ordered (Lo) phases. This transition occurs abruptly in composition space with domains increasing in size by two orders of magnitude, from tens of nanometers to microns. We measured the line tension between coexisting Ld and Lo domains close to the domain size transition for a variety of lipid mixtures, finding that in every case the transition occurs at a line tension of ∼0.3 pN. A computational model incorporating line tension and dipole repulsion indicated that even small changes in line tension can result in domains growing in size by several orders of magnitude, consistent with experimental observations. We find that other properties of the coexisting Ld and Lo phases do not change significantly in the vicinity of the abrupt domain size transition.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpj.2017.02.033DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5390056PMC
April 2017
-->