Publications by authors named "Michael C J Quinn"

24 Publications

  • Page 1 of 1

Investigation of current models of care for genetic heart disease in Australia: A national clinical audit.

Int J Cardiol 2021 May 11;330:128-134. Epub 2021 Feb 11.

Genetic Health Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia; School of Medicine, University of Queensland, Brisbane, Australia.

Background: This sub-study of the Australian Genomics Cardiovascular Genetic Disorders Flagship sought to conduct the first nation-wide audit in Australia to establish the current practices across cardiac genetics clinics.

Method: An audit of records of patients with a suspected genetic heart disease (cardiomyopathy, primary arrhythmia, autosomal dominant congenital heart disease) who had a cardiac genetics consultation between 1st January 2016 and 31 July 2018 and were offered a diagnostic genetic test.

Results: This audit included 536 records at multidisciplinary cardiac genetics clinics from 11 public tertiary hospitals across five Australian states. Most genetic consultations occurred in a clinic setting (90%), followed by inpatient (6%) and Telehealth (4%). Queensland had the highest proportion of Telehealth consultations (9% of state total). Sixty-six percent of patients had a clinical diagnosis of a cardiomyopathy, 28% a primary arrhythmia, and 0.7% congenital heart disease. The reason for diagnosis was most commonly as a result of investigations of symptoms (73%). Most patients were referred by a cardiologist (85%), followed by a general practitioner (9%) and most genetic tests were funded by the state Genetic Health Service (73%). Nationally, 29% of genetic tests identified a pathogenic or likely pathogenic gene variant; 32% of cardiomyopathies, 26% of primary arrhythmia syndromes, and 25% of congenital heart disease.

Conclusion: We provide important information describing the current models of care for genetic heart diseases throughout Australia. These baseline data will inform the implementation and impact of whole genome sequencing in the Australian healthcare landscape.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijcard.2021.02.010DOI Listing
May 2021

Feasibility of Ultra-Rapid Exome Sequencing in Critically Ill Infants and Children With Suspected Monogenic Conditions in the Australian Public Health Care System.

JAMA 2020 06;323(24):2503-2511

Monash Genetics, Monash Health, Melbourne, Australia.

Importance: Widespread adoption of rapid genomic testing in pediatric critical care requires robust clinical and laboratory pathways that provide equitable and consistent service across health care systems.

Objective: To prospectively evaluate the performance of a multicenter network for ultra-rapid genomic diagnosis in a public health care system.

Design, Setting, And Participants: Descriptive feasibility study of critically ill pediatric patients with suspected monogenic conditions treated at 12 Australian hospitals between March 2018 and February 2019, with data collected to May 2019. A formal implementation strategy emphasizing communication and feedback, standardized processes, coordination, distributed leadership, and collective learning was used to facilitate adoption.

Exposures: Ultra-rapid exome sequencing.

Main Outcomes And Measures: The primary outcome was time from sample receipt to ultra-rapid exome sequencing report. The secondary outcomes were the molecular diagnostic yield, the change in clinical management after the ultra-rapid exome sequencing report, the time from hospital admission to the laboratory report, and the proportion of laboratory reports returned prior to death or hospital discharge.

Results: The study population included 108 patients with a median age of 28 days (range, 0 days to 17 years); 34% were female; and 57% were from neonatal intensive care units, 33% were from pediatric intensive care units, and 9% were from other hospital wards. The mean time from sample receipt to ultra-rapid exome sequencing report was 3.3 days (95% CI, 3.2-3.5 days) and the median time was 3 days (range, 2-7 days). The mean time from hospital admission to ultra-rapid exome sequencing report was 17.5 days (95% CI, 14.6-21.1 days) and 93 reports (86%) were issued prior to death or hospital discharge. A molecular diagnosis was established in 55 patients (51%). Eleven diagnoses (20%) resulted from using the following approaches to augment standard exome sequencing analysis: mitochondrial genome sequencing analysis, exome sequencing-based copy number analysis, use of international databases to identify novel gene-disease associations, and additional phenotyping and RNA analysis. In 42 of 55 patients (76%) with a molecular diagnosis and 6 of 53 patients (11%) without a molecular diagnosis, the ultra-rapid exome sequencing result was considered as having influenced clinical management. Targeted treatments were initiated in 12 patients (11%), treatment was redirected toward palliative care in 14 patients (13%), and surveillance for specific complications was initiated in 19 patients (18%).

Conclusions And Relevance: This study suggests feasibility of ultra-rapid genomic testing in critically ill pediatric patients with suspected monogenic conditions in the Australian public health care system. However, further research is needed to understand the clinical value of such testing, and the generalizability of the findings to other health care settings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jama.2020.7671DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7312414PMC
June 2020

Assessment of moderate coffee consumption and risk of epithelial ovarian cancer: a Mendelian randomization study.

Int J Epidemiol 2018 04;47(2):450-459

Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.

Background: Coffee consumption has been shown to be associated with various health outcomes in observational studies. However, evidence for its association with epithelial ovarian cancer (EOC) is inconsistent and it is unclear whether these associations are causal.

Methods: We used single nucleotide polymorphisms associated with (i) coffee and (ii) caffeine consumption to perform Mendelian randomization (MR) on EOC risk. We conducted a two-sample MR using genetic data on 44 062 individuals of European ancestry from the Ovarian Cancer Association Consortium (OCAC), and combined instrumental variable estimates using a Wald-type ratio estimator.

Results: For all EOC cases, the causal odds ratio (COR) for genetically predicted consumption of one additional cup of coffee per day was 0.92 [95% confidence interval (CI): 0.79, 1.06]. The COR was 0.90 (95% CI: 0.73, 1.10) for high-grade serous EOC. The COR for genetically predicted consumption of an additional 80 mg caffeine was 1.01 (95% CI: 0.92, 1.11) for all EOC cases and 0.90 (95% CI: 0.73, 1.10) for high-grade serous cases.

Conclusions: We found no evidence indicative of a strong association between EOC risk and genetically predicted coffee or caffeine levels. However, our estimates were not statistically inconsistent with earlier observational studies and we were unable to rule out small protective associations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ije/dyx236DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6186013PMC
April 2018

Analyses of germline variants associated with ovarian cancer survival identify functional candidates at the 1q22 and 19p12 outcome loci.

Oncotarget 2017 Sep 15;8(39):64670-64684. Epub 2017 Jun 15.

Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.

We previously identified associations with ovarian cancer outcome at five genetic loci. To identify putatively causal genetic variants and target genes, we prioritized two ovarian outcome loci (1q22 and 19p12) for further study. Bioinformatic and functional genetic analyses indicated that and are targets of candidate outcome variants at 1q22 and 19p12, respectively. At 19p12, the chromatin interaction of a putative regulatory element with the promoter region correlated with candidate outcome variants. At 1q22, putative regulatory elements enhanced promoter activity and haplotypes containing candidate outcome variants modulated these effects. In a public dataset, and expression were both associated with ovarian cancer progression-free or overall survival time. In an extended set of 6,162 epithelial ovarian cancer patients, we found that functional candidates at the 1q22 and 19p12 loci, as well as other regional variants, were nominally associated with patient outcome; however, no associations reached our threshold for statistical significance (<1×10). Larger patient numbers will be needed to convincingly identify any true associations at these loci.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.18501DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5630285PMC
September 2017

Genome-wide association study evaluating single-nucleotide polymorphisms and outcomes in patients with advanced stage serous ovarian or primary peritoneal cancer: An NRG Oncology/Gynecologic Oncology Group study.

Gynecol Oncol 2017 11 19;147(2):396-401. Epub 2017 Sep 19.

Gynecological Oncology, Massachusetts General Hospital, Department of Medicine, Boston, MA, USA. Electronic address:

Objective: This study evaluated single nucleotide polymorphisms (SNPs) associated with progression free (PFS) and overall survival (OS) in patients with advanced stage serous EOC.

Methods: Patients enrolled in GOG-172 and 182 who provided specimens for translational research and consent were included. Germline DNA was evaluated with the Illumina's HumanOMNI1-Quad beadchips and scanned using Illumina's iScan optical imaging system. SNPs with allele frequency>0.05 and genotyping rate>0.98 were included. Analysis of SNPs for PFS and OS was done using Cox regression. Statistical significance was determined using Bonferroni corrected p-values with genomic control adjustment.

Results: The initial GWAS analysis included 1,124,677 markers in 396 patients. To obtain the final data set, quality control checks were performed and limited to serous tumors and self-identified Caucasian race. In total 636,555 SNPs and 289 patients passed all the filters. The pre-specified statistical level of significance was 7.855e. No SNPs met this criteria for PFS or OS, however, two SNPs were close to significance (rs10899426 p-2.144e) (rs6256 p-9.774e) for PFS and 2 different SNPs were identified (rs295315 p-7.536e; rs17693104 p-7.734e) which were close to significance for OS.

Conclusions: Using the pre-specified level of significance of 1×10, we did not identify any SNPs of statistical significance for OS or PFS, however several were close. The SNP's identified in this GWAS study will require validation and these preliminary findings may lead to identification of novel pathways and biomarkers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygyno.2017.08.024DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5706110PMC
November 2017

Whole-genome landscape of pancreatic neuroendocrine tumours.

Nature 2017 03 15;543(7643):65-71. Epub 2017 Feb 15.

QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia.

The diagnosis of pancreatic neuroendocrine tumours (PanNETs) is increasing owing to more sensitive detection methods, and this increase is creating challenges for clinical management. We performed whole-genome sequencing of 102 primary PanNETs and defined the genomic events that characterize their pathogenesis. Here we describe the mutational signatures they harbour, including a deficiency in G:C > T:A base excision repair due to inactivation of MUTYH, which encodes a DNA glycosylase. Clinically sporadic PanNETs contain a larger-than-expected proportion of germline mutations, including previously unreported mutations in the DNA repair genes MUTYH, CHEK2 and BRCA2. Together with mutations in MEN1 and VHL, these mutations occur in 17% of patients. Somatic mutations, including point mutations and gene fusions, were commonly found in genes involved in four main pathways: chromatin remodelling, DNA damage repair, activation of mTOR signalling (including previously undescribed EWSR1 gene fusions), and telomere maintenance. In addition, our gene expression analyses identified a subgroup of tumours associated with hypoxia and HIF signalling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature21063DOI Listing
March 2017

Hypermutation In Pancreatic Cancer.

Gastroenterology 2017 01 15;152(1):68-74.e2. Epub 2016 Nov 15.

QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.

Pancreatic cancer is molecularly diverse, with few effective therapies. Increased mutation burden and defective DNA repair are associated with response to immune checkpoint inhibitors in several other cancer types. We interrogated 385 pancreatic cancer genomes to define hypermutation and its causes. Mutational signatures inferring defects in DNA repair were enriched in those with the highest mutation burdens. Mismatch repair deficiency was identified in 1% of tumors harboring different mechanisms of somatic inactivation of MLH1 and MSH2. Defining mutation load in individual pancreatic cancers and the optimal assay for patient selection may inform clinical trial design for immunotherapy in pancreatic cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.gastro.2016.09.060DOI Listing
January 2017

Integrated genomic and transcriptomic analysis of human brain metastases identifies alterations of potential clinical significance.

J Pathol 2015 Nov 19;237(3):363-78. Epub 2015 Aug 19.

QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.

Treatment options for patients with brain metastases (BMs) have limited efficacy and the mortality rate is virtually 100%. Targeted therapy is critically under-utilized, and our understanding of mechanisms underpinning metastatic outgrowth in the brain is limited. To address these deficiencies, we investigated the genomic and transcriptomic landscapes of 36 BMs from breast, lung, melanoma and oesophageal cancers, using DNA copy-number analysis and exome- and RNA-sequencing. The key findings were as follows. (a) Identification of novel candidates with possible roles in BM development, including the significantly mutated genes DSC2, ST7, PIK3R1 and SMC5, and the DNA repair, ERBB-HER signalling, axon guidance and protein kinase-A signalling pathways. (b) Mutational signature analysis was applied to successfully identify the primary cancer type for two BMs with unknown origins. (c) Actionable genomic alterations were identified in 31/36 BMs (86%); in one case we retrospectively identified ERBB2 amplification representing apparent HER2 status conversion, then confirmed progressive enrichment for HER2-positivity across four consecutive metastatic deposits by IHC and SISH, resulting in the deployment of HER2-targeted therapy for the patient. (d) In the ERBB/HER pathway, ERBB2 expression correlated with ERBB3 (r(2)  = 0.496; p < 0.0001) and HER3 and HER4 were frequently activated in an independent cohort of 167 archival BM from seven primary cancer types: 57.6% and 52.6% of cases were phospho-HER3(Y1222) or phospho-HER4(Y1162) membrane-positive, respectively. The HER3 ligands NRG1/2 were barely detectable by RNAseq, with NRG1 (8p12) genomic loss in 63.6% breast cancer-BMs, suggesting a microenvironmental source of ligand. In summary, this is the first study to characterize the genomic landscapes of BM. The data revealed novel candidates, potential clinical applications for genomic profiling of resectable BMs, and highlighted the possibility of therapeutically targeting HER3, which is broadly over-expressed and activated in BMs, independent of primary site and systemic therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/path.4583DOI Listing
November 2015

Whole-genome characterization of chemoresistant ovarian cancer.

Nature 2015 May;521(7553):489-94

Victorian Institute of Forensic Medicine, Southbank, Victoria 3006, Australia.

Patients with high-grade serous ovarian cancer (HGSC) have experienced little improvement in overall survival, and standard treatment has not advanced beyond platinum-based combination chemotherapy, during the past 30 years. To understand the drivers of clinical phenotypes better, here we use whole-genome sequencing of tumour and germline DNA samples from 92 patients with primary refractory, resistant, sensitive and matched acquired resistant disease. We show that gene breakage commonly inactivates the tumour suppressors RB1, NF1, RAD51B and PTEN in HGSC, and contributes to acquired chemotherapy resistance. CCNE1 amplification was common in primary resistant and refractory disease. We observed several molecular events associated with acquired resistance, including multiple independent reversions of germline BRCA1 or BRCA2 mutations in individual patients, loss of BRCA1 promoter methylation, an alteration in molecular subtype, and recurrent promoter fusion associated with overexpression of the drug efflux pump MDR1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature14410DOI Listing
May 2015

Using the MCF10A/MCF10CA1a Breast Cancer Progression Cell Line Model to Investigate the Effect of Active, Mutant Forms of EGFR in Breast Cancer Development and Treatment Using Gefitinib.

PLoS One 2015 13;10(5):e0125232. Epub 2015 May 13.

QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.

Background: Basal-like and triple negative breast cancer (TNBC) share common molecular features, poor prognosis and a propensity for metastasis to the brain. Amplification of epidermal growth factor receptor (EGFR) occurs in ~50% of basal-like breast cancer, and mutations in the epidermal growth factor receptor (EGFR) have been reported in up to ~ 10% of Asian TNBC patients. In non-small cell lung cancer several different mutations in the EGFR tyrosine kinase domain confer sensitivity to receptor tyrosine kinase inhibitors, but the tumourigenic potential of EGFR mutations in breast cells and their potential for targeted therapy is unknown.

Materials And Methods: Constructs containing wild type, G719S or E746-A750 deletion mutant forms of EGFR were transfected into the MCF10A breast cells and their tumorigenic derivative, MCF10CA1a. The effects of EGFR over-expression and mutation on proliferation, migration, invasion, response to gefitinib, and tumour formation in vivo was investigated. Copy number analysis and whole exome sequencing of the MCF10A and MCF10CA1a cell lines were also performed.

Results: Mutant EGFR increased MCF10A and MCF10CA1a proliferation and MCF10A gefitinib sensitivity. The EGFR-E746-A750 deletion increased MCF10CA1a cell migration and invasion, and greatly increased MCF10CA1a xenograft tumour formation and growth. Compared to MCF10A cells, MCF10CA1a cells exhibited large regions of gain on chromosomes 3 and 9, deletion on chromosome 7, and mutations in many genes implicated in cancer.

Conclusions: Mutant EGFR enhances the oncogenic properties of MCF10A cell line, and increases sensitivity to gefitinib. Although the addition of EGFR E746-A750 renders the MCF10CA1a cells more tumourigenic in vivo it is not accompanied by increased gefitinib sensitivity, perhaps due to additional mutations, including the PIK3CA H1047R mutation, that the MCF10CA1a cell line has acquired. Screening TNBC/basal-like breast cancer for EGFR mutations may prove useful for directing therapy but, as in non-small cell lung cancer, accompanying mutations in PIK3CA may confer gefitinib resistance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0125232PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4430383PMC
February 2016

Low levels of IGFBP7 expression in high-grade serous ovarian carcinoma is associated with patient outcome.

BMC Cancer 2015 Mar 17;15:135. Epub 2015 Mar 17.

Department of Human Genetics, McGill University, Montreal, H3A 1B1, Canada.

Background: Insulin-like growth factor binding protein 7 (IGFBP7) has been suggested to act as a tumour suppressor gene in various human cancers, yet its role in epithelial ovarian cancer (EOC) has not yet been investigated. We previously observed that IGFBP7 was one of several genes found significantly upregulated in an EOC cell line model rendered non-tumourigenic as consequence of genetic manipulation. The aim of the present study was to investigate the role of IGFBP7 in high-grade serous ovarian carcinomas (HGSC), the most common type of EOC.

Methods: We analysed IGFBP7 gene expression in 11 normal ovarian surface epithelial cells (NOSE), 79 high-grade serous ovarian carcinomas (HGSC), and seven EOC cell lines using a custom gene expression array platform. IGFBP7 mRNA expression profiles were also extracted from publicly available databases. Protein expression was assessed by immunohistochemistry of 175 HGSC and 10 normal fallopian tube samples using tissue microarray and related to disease outcome. We used EOC cells to investigate possible mechanisms of gene inactivation and describe various in vitro growth effects of exposing EOC cell lines to human recombinant IGFBP7 protein and conditioned media.

Results: All HGSCs exhibited IGFBP7 expression levels that were significantly (p = 0.001) lower than the mean of the expression value of NOSE samples and that of a whole ovary sample. IGFBP7 gene and protein expression were lower in tumourigenic EOC cell lines relative to a non-tumourigenic EOC cell line. None of the EOC cell lines harboured a somatic mutation in IGFBP7, although loss of heterozygosity (LOH) of the IGFBP7 locus and epigenetic methylation silencing of the IGFBP7 promoter was observed in two of the cell lines exhibiting loss of gene/protein expression. In vitro functional assays revealed an alteration of the EOC cell migration capacity. Protein expression analysis of HGSC samples revealed that the large majority of tumour cores (72.6%) showed low or absence of IGFBP7 staining and revealed a significant correlation between IGFBP7 protein expression and a prolonged overall survival (p = 0.044).

Conclusion: The low levels of IGFPB7 in HGSC relative to normal tissues, and association with survival are consistent with a purported role in tumour suppressor pathways.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12885-015-1138-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381406PMC
March 2015

Whole genomes redefine the mutational landscape of pancreatic cancer.

Nature 2015 Feb;518(7540):495-501

Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.

Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature14169DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523082PMC
February 2015

Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis.

Nat Commun 2014 Oct 29;5:5224. Epub 2014 Oct 29.

QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland 4006, Australia.

Oesophageal adenocarcinoma (EAC) incidence is rapidly increasing in Western countries. A better understanding of EAC underpins efforts to improve early detection and treatment outcomes. While large EAC exome sequencing efforts to date have found recurrent loss-of-function mutations, oncogenic driving events have been underrepresented. Here we use a combination of whole-genome sequencing (WGS) and single-nucleotide polymorphism-array profiling to show that genomic catastrophes are frequent in EAC, with almost a third (32%, n=40/123) undergoing chromothriptic events. WGS of 22 EAC cases show that catastrophes may lead to oncogene amplification through chromothripsis-derived double-minute chromosome formation (MYC and MDM2) or breakage-fusion-bridge (KRAS, MDM2 and RFC3). Telomere shortening is more prominent in EACs bearing localized complex rearrangements. Mutational signature analysis also confirms that extreme genomic instability in EAC can be driven by somatic BRCA2 mutations. These findings suggest that genomic catastrophes have a significant role in the malignant transformation of EAC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms6224DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596003PMC
October 2014

VGLL3 expression is associated with a tumor suppressor phenotype in epithelial ovarian cancer.

Mol Oncol 2013 Jun 16;7(3):513-30. Epub 2013 Jan 16.

Department of Human Genetics, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Montreal H3G 1A4, Quebec, Canada.

Previous studies have implicated vestigial like 3 (VGLL3), a chromosome 3p12.3 gene that encodes a putative transcription co-factor, as a candidate tumor suppressor gene (TSG) in high-grade serous ovarian carcinomas (HGSC), the most common type of epithelial ovarian cancer. A complementation analysis based on microcell-mediated chromosome transfer (MMCT) using a centric fragment of chromosome 3 (der3p12-q12.1) into the OV-90 ovarian cancer cell line haploinsufficient for 3p and lacking VGLL3 expression was performed to assess the effect on tumorigenic potential and growth characteristics. Genetic characterization of the derived MMCT hybrids revealed that only the hybrid that contained an intact VGLL3 locus exhibited alterations of tumorigenic potential in a nude mouse xenograft model and various in vitro growth characteristics. Only stable OV-90 transfectant clones expressing low levels of VGLL3 were derived. These clones exhibited an altered cytoplasmic morphology characterized by numerous single membrane bound multivesicular-bodies (MVB) that were not attributed to autophagy. Overexpression of VGLL3 in OV-90 was achieved using a lentivirus-based tetracycline inducible gene expression system, which also resulted in MVB formation in the infected cell population. Though there was no significant differences in various in vitro and in vivo growth characteristics in a comparison of VGLL3-expressing clones with empty vector transfectant controls, loss of VGLL3 expression was observed in tumors derived from mouse xenograft models. VGLL3 gene and protein expression was significantly reduced in HGSC samples (>98%, p < 0.05) relative to either normal ovarian surface epithelial cells or epithelial cells of the fallopian tube, possible tissues of origin of HGSC. Also, there appeared to be to be more cases with higher staining levels in stromal tissue component from HGSC cases that had a prolonged disease-free survival. The results taken together suggest that VGLL3 is involved in tumor suppressor pathways, a feature that is characterized by the absence of VGLL3 expression in HGSC samples.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molonc.2012.12.006DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5528482PMC
June 2013

FKBP10/FKBP65 expression in high-grade ovarian serous carcinoma and its association with patient outcome.

Int J Oncol 2013 Mar 23;42(3):912-20. Epub 2013 Jan 23.

Research Centre of the University of Montreal Hospital Centre/Montreal Cancer Institute, Montreal, QC, Canada.

The frequent loss of chromosome 17 in epithelial ovarian carcinomas (EOC), particularly high-grade serous carcinomas (HGSC), has been attributed to the disruption of TP53 (at 17p13.1) and other chromosome 17 genes suspected to play a role in tumour suppressor pathways. In a transcriptome analysis of HGSC, we showed underexpression of a number of chromosome 17 genes, which included FKBP10 (at 17q21.1) and collagen I α 1 (COL1A1; at 17q21.33). FKBP10 codes for the immunophilin FKBP65 and is suspected to act as a chaperone for COL1A1. We have investigated FKBP10 (gene) and FKBP65 (protein) expression in HGSC samples and EOC cell lines that differ in their tumourigenic potential. COL1A1 expression was also investigated given the purported function of FKBP65. RT-PCR analysis verified underexpression of FKBP10 and COL1A1 in HGSCs (n=14) and six tumourigenic EOC cell lines, relative to normal ovarian surface epithelial cells and a non-tumourigenic EOC cell line. Immunohistochemistry analyses of 196 HGSC samples using tissue microarrays revealed variable staining intensities in the epithelial tumour component where only 7.8% and 1.0% of samples stained intensely for FKBP65 and COL1A1, respectively. Variable staining intensities were also observed for the stromal component where 23.6% and 24.1% stained intensely for FKBP65 and COL1A1, respectively. There was no significant correlation of staining intensity of either protein with disease stage. Staining of FKBP65 was clearly visible in normal epithelial cells of the ovarian surface and fallopian tube. There was a significant correlation between absence of FKBP65 staining in the epithelial cell component of the tumour and prolonged overall survival (p<0.001). Our results suggest that underexpression of FKBP65 protein is characteristic of HGSCs and that this expression profile may be linked to molecular pathways associated with an unfavourable outcome in cancer patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijo.2013.1797DOI Listing
March 2013

The genomic landscape of TP53 and p53 annotated high grade ovarian serous carcinomas from a defined founder population associated with patient outcome.

PLoS One 2012 20;7(9):e45484. Epub 2012 Sep 20.

Department of Human Genetics, McGill University, Montreal, Quebec, Canada.

High-grade ovarian serous carcinomas (HGSC) are characterized by TP53 mutations and non-random patterns of chromosomal anomalies, where the nature of the TP53 mutation may correlate with clinical outcome. However, the frequency of common somatic genomic events occurring in HGSCs from demographically defined populations has not been explored. Whole genome SNP array, and TP53 mutation, gene and protein expression analyses were assessed in 87 confirmed HGSC samples with clinical correlates from French Canadians, a population exhibiting strong founder effects, and results were compared with independent reports describing similar analyses from unselected populations. TP53 mutations were identified in 91% of HGSCs. Anomalies observed in more than 50% of TP53 mutation-positive HGSCs involved gains of 3q, 8q and 20q, and losses of 4q, 5q, 6q, 8p, 13q, 16q, 17p, 17q, 22q and Xp. Nearly 400 regions of non-overlapping amplification or deletion were identified, where 178 amplifications and 98 deletions involved known genes. The subgroup expressing mutant p53 protein exhibited significantly prolonged overall and disease-free survival as compared with the p53 protein null subgroup. Interestingly, a comparative analysis of genomic landscapes revealed a significant enrichment of gains involving 1q, 8q, and 12p intervals in the subgroup expressing mutant p53 protein as compared with the p53 protein null subgroup. Although the findings show that the frequency of TP53 mutations and the genomic landscapes observed in French Canadian samples were similar to those reported for samples from unselected populations, there were differences in the magnitude of global gains/losses of specific chromosomal arms and in the spectrum of amplifications and deletions involving focal regions in individual samples. The findings from our comparative genomic analyses also support the notion that there may be biological differences between HGSCs that could be related to the nature of the TP53 mutation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0045484PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3447752PMC
March 2013

Derivation and characterization of matched cell lines from primary and recurrent serous ovarian cancer.

BMC Cancer 2012 Aug 29;12:379. Epub 2012 Aug 29.

Centre de recherche du Centre hospitalier de l'Université de Montréal (CHUM)/Institut du cancer de Montréal, Montréal, Canada.

Background: Cell line models have proven to be effective tools to investigate a variety of ovarian cancer features. Due to the limited number of cell lines, particularly of the serous subtype, the heterogeneity of the disease, and the lack of cell lines that model disease progression, there is a need to further develop cell line resources available for research. This study describes nine cell lines derived from three ovarian cancer cases that were established at initial diagnosis and at subsequent relapse after chemotherapy.

Methods: The cell lines from three women diagnosed with high-grade serous ovarian cancer (1369, 2295 and 3133) were derived from solid tumor (TOV) and ascites (OV), at specific time points at diagnosis and relapse (R). Primary treatment was a combination of paclitaxel/carboplatin (1369, 3133), or cisplatin/topotecan (2295). Second line treatment included doxorubicin, gemcitabine and topotecan. In addition to molecular characterization (p53, HER2), the cell lines were characterized based on cell growth characteristics including spheroid growth, migration potential, and anchorage independence. The in vivo tumorigenicity potential of the cell lines was measured. Response to paclitaxel and carboplatin was assessed using a clonogenic assay.

Results: All cell lines had either a nonsense or missense TP53 mutations. The ability to form compact spheroids or aggregates was observed in six of nine cell lines. Limited ability for migration and anchorage independence was observed. The OV3133(R) cell line, formed tumors at subcutaneous sites in SCID mice. Based on IC50 values and dose response curves, there was clear evidence of acquired resistance to carboplatin for TOV2295(R) and OV2295(R2) cell lines.

Conclusion: The study identified nine new high-grade serous ovarian cancer cell lines, derived before and after chemotherapy that provides a unique resource for investigating the evolution of this common histopathological subtype of ovarian cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2407-12-379DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3532154PMC
August 2012

The chemiluminescence based Ziplex automated workstation focus array reproduces ovarian cancer Affymetrix GeneChip expression profiles.

J Transl Med 2009 Jul 6;7:55. Epub 2009 Jul 6.

Department of Human Genetics, McGill University, Montreal, Canada.

Background: As gene expression signatures may serve as biomarkers, there is a need to develop technologies based on mRNA expression patterns that are adaptable for translational research. Xceed Molecular has recently developed a Ziplex technology, that can assay for gene expression of a discrete number of genes as a focused array. The present study has evaluated the reproducibility of the Ziplex system as applied to ovarian cancer research of genes shown to exhibit distinct expression profiles initially assessed by Affymetrix GeneChip analyses.

Methods: The new chemiluminescence-based Ziplex gene expression array technology was evaluated for the expression of 93 genes selected based on their Affymetrix GeneChip profiles as applied to ovarian cancer research. Probe design was based on the Affymetrix target sequence that favors the 3' UTR of transcripts in order to maximize reproducibility across platforms. Gene expression analysis was performed using the Ziplex Automated Workstation. Statistical analyses were performed to evaluate reproducibility of both the magnitude of expression and differences between normal and tumor samples by correlation analyses, fold change differences and statistical significance testing.

Results: Expressions of 82 of 93 (88.2%) genes were highly correlated (p < 0.01) in a comparison of the two platforms. Overall, 75 of 93 (80.6%) genes exhibited consistent results in normal versus tumor tissue comparisons for both platforms (p < 0.001). The fold change differences were concordant for 87 of 93 (94%) genes, where there was agreement between the platforms regarding statistical significance for 71 (76%) of 87 genes. There was a strong agreement between the two platforms as shown by comparisons of log2 fold differences of gene expression between tumor versus normal samples (R = 0.93) and by Bland-Altman analysis, where greater than 90% of expression values fell within the 95% limits of agreement.

Conclusion: Overall concordance of gene expression patterns based on correlations, statistical significance between tumor and normal ovary data, and fold changes was consistent between the Ziplex and Affymetrix platforms. The reproducibility and ease-of-use of the technology suggests that the Ziplex array is a suitable platform for translational research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1479-5876-7-55DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2724495PMC
July 2009

Reprogramming of the transcriptome in a novel chromosome 3 transfer tumor suppressor ovarian cancer cell line model affected molecular networks that are characteristic of ovarian cancer.

Mol Carcinog 2009 Jul;48(7):648-61

Department of Human Genetics, McGill University, Montréal, Canada.

Tumor suppression as a consequence of the transfer of chromosome 3p fragments was previously observed in a novel epithelial ovarian cancer (EOC) OV-90 cell line model harboring loss of 3p. Microarray analysis revealed that tumor suppression was associated with a modified transcriptome. To investigate the relevance of the altered transcriptome, the differentially expressed genes identified by Affymetrix analysis in the 3p transfer studies, were integrated with a comparative microarray analysis of normal ovarian surface epithelial (NOSE) cells and malignant ovarian (TOV) cancers. Data from 219 significantly differentially expressed genes exhibited patterns in the direction predicted by the analysis of 3p transfer study. The 30 genes with the highest statistically significant differences (P < 1 x 10(-8)) in expression were found consistently differentially expressed between NOSE and TOV samples. The investigation of these genes in benign serous ovarian tumors and EOC cell lines also exhibited predictable expression patterns. Within the group of differentially expressed genes were SPARC, DAB2, CP, EVI1, ELF3, and EHD2, known to play a role in ovarian cancer, genes implicated in other cancers, such as GREM1 and GLIPR1, as well as genes not previously reported in a cancer context such as AKAP2 and ATAD4. A number of the differentially expressed genes are implicated in the TGF-beta signaling pathway. These findings suggest that the reprogramming of the transcriptome that occurred as a consequence of the chromosome 3 transfer and tumor suppression affected molecular networks that are characteristic of ovarian carcinogenesis thus validating our novel ovarian cancer cell line model.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mc.20511DOI Listing
July 2009

BTF4/BTNA3.2 and GCS as candidate mRNA prognostic markers in epithelial ovarian cancer.

Cancer Epidemiol Biomarkers Prev 2008 Apr;17(4):913-20

Centre de Recherche du Centre Hospitalier de l'Université de Montréal/Institut du Cancer de Montréal, Montreal, Quebec, Canada.

This study aims to identify reliable prognosis markers to predict patient outcome at surgery in high-grade serous epithelial ovarian cancer by a real-time quantitative PCR (RT-q-PCR)-based test. Seventeen tissue samples from serous epithelial ovarian cancer patients were screened by DNA microarray to identify genes differentially expressed between tumors from patients who relapsed within 18 months and tumors from patients showing no relapse or relapsed after 24 months after initial diagnosis. RNA expression of a subset of genes was validated by RT-q-PCR in the initial set of 17 samples. From these results, a refined list was selected and tested in independent samples from 41 serous. Expression was associated with time to relapse and clinical variables. Microarray analysis identified a profile of 34 differentially expressed genes. RT-q-PCR validated the expression profile of a subset of seven genes in the initial set of patients. Differential gene expression was also validated in an independent set of patients. Low BTF4 or GCS expression was strongly associated with poor outcome in Kaplan-Meier analysis (P < 0.05, log-rank test) and Cox univariate as well as in multivariate analyses with a higher hazard ratio than clinical variables, such as residual disease, age, stage, and grade.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1055-9965.EPI-07-0692DOI Listing
April 2008

Transcriptome analysis of serous ovarian cancers identifies differentially expressed chromosome 3 genes.

Mol Carcinog 2008 Jan;47(1):56-65

Department of Human Genetics, McGill University, Montreal, Canada.

Cytogenetic, molecular genetic and functional analyses have implicated chromosome 3 genes in epithelial ovarian cancers (EOC). To further characterize their contribution to EOC, the Affymetrix U133A GeneChip(R) was used to perform transcriptome analyses of chromosome 3 genes in primary cultures of normal ovarian surface epithelial (NOSE) cells (n = 14), malignant serous epithelial ovarian tumors (TOV) (n = 17), and four EOC cell lines (TOV-81D, TOV-112D, TOV-21G, and OV-90). A two-way comparative analysis of 735 known genes and expressed sequences identified 278 differentially expressed genes, where 43 genes were differentially expressed in at least 50% of the TOV samples. Three genes, RIS1 (at 3p21.31), GBE1 (at 3p12.2), and HEG1 (at 3q21.2), were similarly underexpressed in all TOV samples. Deregulation of the expression of these genes was not associated with loss of heterozygosity (LOH) of the genetic loci harboring them. LOH analysis of the RIS1, GBE1, and HEG1 loci was observed at frequencies of 14.3%, 13.7%, and 9.2%, respectively, in a series of 66 malignant TOV samples of the serous subtype. Reduced expression levels of RIS1, GBE1, and HEG1 were observed only in the tumorigenic EOC cell lines (TOV-21G, TOV-112D, and OV-90) and did not correlate with LOH. These results combined suggest that RIS1, GBE1, and HEG1, unlike classical tumor suppressor genes, are not likely to be primary targets of inactivation. This study provides a comprehensive analysis of chromosome 3 gene expression in NOSE and in EOC samples and identifies chromosome 3 gene candidates for further study.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mc.20361DOI Listing
January 2008

Pseudobranch and gill Na(+), K(+)-ATPase activity in juvenile chinook salmon, Oncorhynchus tshawytscha: developmental changes and effects of growth hormone, cortisol and seawater transfer.

Comp Biochem Physiol A Mol Integr Physiol 2003 Jun;135(2):249-62

Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand.

The teleost pseudobranch is a gill-like structure often fused to the anterior of the opercular cavity. Pseudobranch cells are mitochondria rich and have high levels of Na(+), K(+)-ATPase activity. In this study, pseudobranch Na(+), K(+)-ATPase activity in juvenile chinook salmon (Oncorhynchus tshawytscha) was compared to gill Na(+), K(+)-ATPase activity, a known marker of parr-smolt transformation, in three experiments. In two stocks of New Zealand chinook salmon, pseudobranch Na(+), K(+)-ATPase activity was found to significantly increase during development. At these times gill Na(+), K(+)-ATPase activity was also elevated. Pseudobranch Na(+), K(+)-ATPase activity did not increase 10 days after transfer from fresh water to 34 ppt seawater, a treatment that resulted in a twofold increase in gill Na(+), K(+)-ATPase activity. Cortisol (50 microg/g) and ovine growth hormone (5 microg/g) implants had no effect on pseudobranch Na(+), K(+)-ATPase activity in underyearling chinook salmon, while gill Na(+), K(+)-ATPase activity was stimulated by each hormone. In yearling chinook salmon, only cortisol stimulated pseudobranch Na(+), K(+)-ATPase activity 14 days post-implantation. It was concluded that the pseudobranch differs from the gill in terms of the regulation of Na(+), K(+)-ATPase activity and a role during adaptation to seawater is likely to be limited.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1095-6433(03)00067-9DOI Listing
June 2003