Publications by authors named "Michael A Aimino"

2 Publications

  • Page 1 of 1

The Tenets of Teneurin: Conserved Mechanisms Regulate Diverse Developmental Processes in the Nervous System.

Front Neurosci 2019 30;13:27. Epub 2019 Jan 30.

Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States.

To successfully integrate a neuron into a circuit, a myriad of developmental events must occur correctly and in the correct order. Neurons must be born and grow out toward a destination, responding to guidance cues to direct their path. Once arrived, each neuron must segregate to the correct sub-region before sorting through a milieu of incorrect partners to identify the correct partner with which they can connect. Finally, the neuron must make a synaptic connection with their correct partner; a connection that needs to be broadly maintained throughout the life of the animal while remaining responsive to modes of plasticity and pruning. Though many intricate molecular mechanisms have been discovered to regulate each step, recent work showed that a single family of proteins, the Teneurins, regulates a host of these developmental steps in - an example of biological adaptive reuse. Teneurins first influence axon guidance during early development. Once neurons arrive in their target regions, Teneurins enable partner matching and synapse formation in both the central and peripheral nervous systems. Despite these diverse processes and systems, the Teneurins use conserved mechanisms to achieve these goals, as defined by three tenets: (1) transsynaptic interactions with each other, (2) membrane stabilization via an interaction with and regulation of the cytoskeleton, and (3) a role for presynaptic Ten-a in regulating synaptic function. These processes are further distinguished by (1) the nature of the transsynaptic interaction - homophilic interactions (between the same Teneurins) to engage partner matching and heterophilic interactions (between different Teneurins) to enable synaptic connectivity and the proper apposition of pre- and postsynaptic sites and (2) the location of cytoskeletal regulation (presynaptic cytoskeletal regulation in the CNS and postsynaptic regulation of the cytoskeleton at the NMJ). Thus, both the roles and the mechanisms governing them are conserved across processes and synapses. Here, we will highlight the contributions of synaptic biology to our understanding of the Teneurins, discuss the mechanistic conservation that allows the Teneurins to achieve common neurodevelopmental goals, and present new data in support of these points. Finally, we will posit the next steps for understanding how this remarkably versatile family of proteins functions to control multiple distinct events in the creation of a nervous system.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fnins.2019.00027DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6363694PMC
January 2019

Acute ethanol modulation of neurocircuit function in the nucleus of the tractus solitarius.

Brain Res Bull 2018 04 29;138:5-11. Epub 2017 Jul 29.

Department of Neural and Behavioral Science, Penn State Hershey College of Medicine, United States. Electronic address:

The nucleus of the tractus solitarius (NTS) is a brain stem region critical to many physiologic processes and has been implicated in addiction to multiple classes of abused drugs, including alcohol (EtOH). That said, the mechanism by which EtOH modulates NTS neurocircuit activity is not well characterized and has yet to be examined utilizing electrophysiologic methods in mouse models of alcohol use disorders. To begin to address this gap in knowledge, we sought to use whole-cell and cell-attached recordings to determine the mechanism of acute EtOH action on GABAergic and glutamatergic neurotransmission, as well as on action potential firing in the NTS of adult male, EtOH naïve mice. Bath application of EtOH (50mM) significantly enhanced the frequency of spontaneous inhibitory postsynaptic current events, while increasing the amplitude of these events in half of the neurons tested. This finding suggests a presynaptic mechanism of EtOH action on GABAergic transmission in the NTS as well as a postsynaptic mechanism in subsets of NTS neurons. EtOH application was further associated with a significant decrease in action potential firing in most, but not all, NTS neurons tested. EtOH induced a small but significant decrease in spontaneous excitatory postsynaptic current frequency, indicating that EtOH may also inhibit NTS glutamatergic signaling to some degree. Intriguingly, in vivo EtOH exposure (4g/kg IP) enhanced c-FOS colocalization with tyrosine hydroxylase via immunohistochemical methods, indicating that NTS norepinephrine neurons may be activated by acute EtOH exposure. Although future work is needed, the current data indicate that acute EtOH may enhance GABAergic signaling in local NTS circuits resulting in disinhibition of NTS norepinephrine neurons. Such a finding has important implications in understanding the role of the NTS in the development of alcoholism.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2017.07.019DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5788745PMC
April 2018
-->