Publications by authors named "Meilin Rao"

4 Publications

  • Page 1 of 1

N-methyladenosine mRNA methylation of regulates AKT signalling to promote PTEN-deficient pancreatic cancer progression.

Gut 2020 12 20;69(12):2180-2192. Epub 2020 Apr 20.

Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China, Huazhong University of Science and Technology Tongji Medical College, Wuhan, China

Objective: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide. Thus far, most drugs have failed to significantly improve patient survival. N-methyladenosine (mA) plays an important role in the progression of PDAC, but its aberrant regulation driven by germline variants in human diseases remains unclear.

Design: We first performed an exome-wide association analysis in 518 PDAC patients with overall survival and replicated in an independent population containing 552 PDAC patients. Then, a series of biochemical experiments in vitro and in vivo were conducted to investigate potential mechanisms of the candidate variant and its target gene underlying the PDAC progression. Moreover, the PIK3CB-selective inhibitor KIN-193 was used to block PDAC tumour growth.

Results: We identified a missense variant rs142933486 in that is significantly associated with the overall survival of PDAC by reducing the mA level, which facilitated its mRNA and protein expression levels mediated by the mA 'writer' complex (METTL13/METTL14/WTAP) and the mA 'reader' YTHDF2. The upregulation of is widely found in PDAC tumour tissues and significantly correlated with the poor prognosis of PDAC, especially in PTEN-deficient patients. We further demonstrated that overexpression substantially enhanced the proliferation and migration abilities of PTEN-deficient PDAC cells and activated AKT signalling pathway. Remarkably, KIN-193, a PIK3CB-selective inhibitor, is shown to serve as an effective anticancer agent for blocking PTEN-deficient PDAC.

Conclusions: These findings demonstrate aberrant mA homoeostasis as an oncogenic mechanism in PDAC and highlight the potential of as a therapeutic target for this disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/gutjnl-2019-320179DOI Listing
December 2020

CpG-methylation-based risk score predicts progression in colorectal cancer.

Epigenomics 2020 04 17;12(7):605-615. Epub 2020 Mar 17.

Department of Epidemiology & Biostatistics & Ministry of Education Key Lab of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430030, PR China.

To identify patients with colorectal cancer (CRC) who are at a truly higher risk of progression, which is key for individualized approaches to precision therapy. We developed a predictor associated with progression-free interval (PFI) using The Cancer Genome Atlas CRC methylation data. The risk score was associated with PFI in the whole cohort (p < 0.001). A nomogram consisting of the risk score and other significant clinical features was generated to predict the 3- and 5-year PFI in the whole set (area under the curve: 0.79 and 0.71, respectively). The risk score based on 23 DNA-methylation sites may serve as the basis for improved prediction of progression in patients with CRC in future clinical practice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2217/epi-2019-0300DOI Listing
April 2020

Risk SNP-Mediated Enhancer-Promoter Interaction Drives Colorectal Cancer through Both and .

Cancer Res 2020 05 3;80(9):1804-1818. Epub 2020 Mar 3.

Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China.

Although genome-wide association studies (GWAS) have identified more than 100 colorectal cancer risk loci, most of the biological mechanisms associated with these loci remain unclear. Here we first performed a comprehensive expression quantitative trait loci analysis in colorectal cancer tissues adjusted for multiple confounders to test the determinants of germline variants in established GWAS susceptibility loci on mRNA and long noncoding RNA (lncRNA) expression. Combining integrative functional genomic/epigenomic analyses and a large-scale population study consisting of 6,024 cases and 10,022 controls, we then prioritized rs174575 with a C>G change as a potential causal candidate for colorectal cancer at 11q12.2, as its G allele was associated with an increased risk of colorectal cancer (OR = 1.26; 95% confidence interval = 1.17-1.36; = 2.57 × 10). rs174575 acted as an allele-specific enhancer to distally facilitate expression of both FADS2 and lncRNA AP002754.2 via long-range enhancer-promoter interaction loops, which were mediated by E2F1. AP002754.2 further activated a transcriptional activator that upregulated FADS2 expression. FADS2, in turn, was overexpressed in colorectal cancer tumor tissues and functioned as a potential oncogene that facilitated colorectal cancer cell proliferation and xenograft growth and by increasing the metabolism of PGE2, an oncogenic molecule involved in colorectal cancer tumorigenesis. Our findings represent a novel mechanism by which a noncoding variant can facilitate long-range genome interactions to modulate the expression of multiple genes including not only mRNA, but also lncRNA, which provides new insights into the understanding of colorectal cancer etiology. SIGNIFICANCE: This study provides an oncogenic regulatory circuit among several oncogenes including , and underlying the association of rs174575 with colorectal cancer risk, which is driven by long-range enhancer-promoter interaction loops. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/9/1804/F1.large.jpg.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-19-2389DOI Listing
May 2020

A genetic variant in PIK3R1 is associated with pancreatic cancer survival in the Chinese population.

Cancer Med 2019 07 6;8(7):3575-3582. Epub 2019 May 6.

Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China.

Pancreatic cancer is one of the deadliest malignancies with few early detection tests or effective therapies. PI3K-AKT signaling is recognized to modulate cancer progression. We previously identified that a genetic variant in PKN1 increased pancreatic cancer risk through the PKN1/FAK/PI3K/AKT pathway. In order to investigate the associations between genetic variations in that pathway and pancreatic cancer prognosis, we conducted a two-stage survival analysis in a total of 547 Chinese pancreatic cancer patients. Consequently, a variant, rs13167294 A>C in PIK3R1, was significantly associated with poor survival in both stages and with hazard ratio being 1.32 (95% CI = 1.13-1.56, P = 0.0007) in the combined analysis. Function annotation and prediction suggested that genetic variants in this locus might affect overall survival of pancreatic cancer patients by regulating PIK3R1 expression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cam4.2228DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6601582PMC
July 2019
-->