Publications by authors named "Mehmet Baygin"

6 Publications

  • Page 1 of 1

PrimePatNet87: Prime pattern and tunable q-factor wavelet transform techniques for automated accurate EEG emotion recognition.

Comput Biol Med 2021 Sep 16;138:104867. Epub 2021 Sep 16.

Ngee Ann Polytechnic, Department of Electronics and Computer Engineering, 599489, Singapore; Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore; Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan. Electronic address:

Nowadays, many deep models have been presented to recognize emotions using electroencephalogram (EEG) signals. These deep models are computationally intensive, it takes a longer time to train the model. Also, it is difficult to achieve high classification performance using for emotion classification using machine learning techniques. To overcome these limitations, we present a hand-crafted conventional EEG emotion classification network. In this work, we have used novel prime pattern and tunable q-factor wavelet transform (TQWT) techniques to develop an automated model to classify human emotions. Our proposed cognitive model comprises feature extraction, feature selection, and classification steps. We have used TQWT on the EEG signals to obtain the sub-bands. The prime pattern and statistical feature generator are employed on the generated sub-bands and original signal to generate 798 features. 399 (half of them) out of 798 features are selected using minimum redundancy maximum relevance (mRMR) selector, and misclassification rates of each signal are evaluated using support vector machine (SVM) classifier. The proposed network generated 87 feature vectors hence, this model is named PrimePatNet87. In the last step of the feature generation, the best 20 feature vectors which are selected based on the calculated misclassification rates, are concatenated. The generated feature vector is subjected to the feature selection and the most significant 1000 features are selected using the mRMR selector. These selected features are then classified using an SVM classifier. In the last phase, iterative majority voting has been used to generate a general result. We have used three publicly available datasets, namely DEAP, DREAMER, and GAMEEMO, to develop our proposed model. Our presented PrimePatNet87 model reached over 99% classification accuracy on whole datasets with leave one subject out (LOSO) validation. Our results demonstrate that the developed prime pattern network is accurate and ready for real-world applications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2021.104867DOI Listing
September 2021

Novel automated PD detection system using aspirin pattern with EEG signals.

Comput Biol Med 2021 10 6;137:104841. Epub 2021 Sep 6.

Ngee Ann Polytechnic, Department of Electronics and Computer Engineering, 599489, Singapore; Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore; Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan. Electronic address:

Background And Objective: Parkinson's disease (PD) is one of the most common diseases worldwide which reduces quality of life of patients and their family members. The electroencephalogram (EEG) signals coupled with various advanced machine-learning algorithms have been widely used to detect PD automatically. In this paper, we propose a novel aspirin pattern to detect PD accurately using EEG signals.

Method: In this research, the feature generation ability of a chemical graph is investigated. Therefore, this work presents a new graph-based aspirin model for automated PD detection using EEG signals. The proposed method consists of (i) multilevel feature generation phase involving new aspirin pattern, statistical moments, and maximum absolute pooling (MAP), (ii) selection of most discriminative features using neighborhood component analysis (NCA), and (iii) classification using k nearest neighbor (kNN) for automated detection of PD and (iv) iterative majority voting.

Results: A public dataset has been used to develop the proposed model. Two cases are created, and these cases consisted of two classes. Leave one subject out (LOSO) validation have been used to calculate robust results. Our proposal achieved 93.57% and 95.48% classification accuracies for Case 1 and Case 2 respectively.

Conclusion: Our developed automated PD model is accurate and equipped to be tested with more diverse EEG datasets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2021.104841DOI Listing
October 2021

Feed-forward LPQNet based Automatic Alzheimer's Disease Detection Model.

Comput Biol Med 2021 10 4;137:104828. Epub 2021 Sep 4.

Department of Neurology, Adiyaman University Medicine Faculty, Adiyaman, Turkey. Electronic address:

Background: Alzheimer's disease (AD) is one of the most commonly seen brain ailments worldwide. Therefore, many researches have been presented about AD detection and cure. In addition, machine learning models have also been proposed to detect AD promptly.

Materials And Method: In this work, a new brain image dataset was collected. This dataset contains two categories, and these categories are healthy and AD. This dataset was collected from 1070 subjects. This work presents an automatic AD detection model to detect AD using brain images automatically. The presented model is called a feed-forward local phase quantization network (LPQNet). LPQNet consists of (i) multilevel feature generation based on LPQ and average pooling, (ii) feature selection using neighborhood component analysis (NCA), and (iii) classification phases. The prime objective of the presented LPQNet is to reach high accuracy with low computational complexity. LPQNet generates features on six levels. Therefore, 256 × 6 = 1536 features are generated from an image, and the most important 256 out 1536 features are selected. The selected 256 features are classified on the conventional classifiers to denote the classification capability of the generated and selected features by LPQNet.

Results: The presented LPQNet was tested on three image datasets to demonstrate the universal classification ability of the LPQNet. The proposed LPQNet attained 99.68%, 100%, and 99.64% classification accuracy on the collected AD image dataset, the Harvard Brain Atlas AD dataset, and the Kaggle AD dataset. Moreover, LPQNet attained 99.62% accuracy on the Kaggle AD dataset using four classes.

Conclusions: Moreover, the calculated results from LPQNet are compared to other automatic AD detection models. Comparisons, results, and findings clearly denote the superiority of the presented model. In addition, a new intelligent AD detector application can be developed for use in magnetic resonance (MR) and computed tomography (CT) devices. By using the developed automated AD detector, new generation intelligence MR and CT devices can be developed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2021.104828DOI Listing
October 2021

Automatic COVID-19 Detection Using Exemplar Hybrid Deep Features with X-ray Images.

Int J Environ Res Public Health 2021 07 29;18(15). Epub 2021 Jul 29.

Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore S599489, Singapore.

COVID-19 and pneumonia detection using medical images is a topic of immense interest in medical and healthcare research. Various advanced medical imaging and machine learning techniques have been presented to detect these respiratory disorders accurately. In this work, we have proposed a novel COVID-19 detection system using an exemplar and hybrid fused deep feature generator with X-ray images. The proposed Exemplar COVID-19FclNet9 comprises three basic steps: exemplar deep feature generation, iterative feature selection and classification. The novelty of this work is the feature extraction using three pre-trained convolutional neural networks (CNNs) in the presented feature extraction phase. The common aspects of these pre-trained CNNs are that they have three fully connected layers, and these networks are AlexNet, VGG16 and VGG19. The fully connected layer of these networks is used to generate deep features using an exemplar structure, and a nine-feature generation method is obtained. The loss values of these feature extractors are computed, and the best three extractors are selected. The features of the top three fully connected features are merged. An iterative selector is used to select the most informative features. The chosen features are classified using a support vector machine (SVM) classifier. The proposed COVID-19FclNet9 applied nine deep feature extraction methods by using three deep networks together. The most appropriate deep feature generation model selection and iterative feature selection have been employed to utilise their advantages together. By using these techniques, the image classification ability of the used three deep networks has been improved. The presented model is developed using four X-ray image corpora (DB1, DB2, DB3 and DB4) with two, three and four classes. The proposed Exemplar COVID-19FclNet9 achieved a classification accuracy of 97.60%, 89.96%, 98.84% and 99.64% using the SVM classifier with 10-fold cross-validation for four datasets, respectively. Our developed Exemplar COVID-19FclNet9 model has achieved high classification accuracy for all four databases and may be deployed for clinical application.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijerph18158052DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345793PMC
July 2021

Automated ASD detection using hybrid deep lightweight features extracted from EEG signals.

Comput Biol Med 2021 07 10;134:104548. Epub 2021 Jun 10.

Ngee Ann Polytechnic, Department of Electronics and Computer Engineering, 599489, Singapore; Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore; Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan. Electronic address:

Background: Autism spectrum disorder is a common group of conditions affecting about one in 54 children. Electroencephalogram (EEG) signals from children with autism have a common morphological pattern which makes them distinguishable from normal EEG. We have used this type of signal to design and implement an automated autism detection model.

Materials And Method: We propose a hybrid lightweight deep feature extractor to obtain high classification performance. The system was designed and tested with a big EEG dataset that contained signals from autism patients and normal controls. (i) A new signal to image conversion model is presented in this paper. In this work, features are extracted from EEG signal using one-dimensional local binary pattern (1D_LBP) and the generated features are utilized as input of the short time Fourier transform (STFT) to generate spectrogram images. (ii) The deep features of the generated spectrogram images are extracted using a combination of pre-trained MobileNetV2, ShuffleNet, and SqueezeNet models. This method is named hybrid deep lightweight feature generator. (iii) A two-layered ReliefF algorithm is used for feature ranking and feature selection. (iv) The most discriminative features are fed to various shallow classifiers, developed using a 10-fold cross-validation strategy for automated autism detection.

Results: A support vector machine (SVM) classifier reached 96.44% accuracy based on features from the proposed model.

Conclusions: The results strongly indicate that the proposed hybrid deep lightweight feature extractor is suitable for autism detection using EEG signals. The model is ready to serve as part of an adjunct tool that aids neurologists during autism diagnosis in medical centers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2021.104548DOI Listing
July 2021

Immunity-based optimal estimation approach for a new real time group elevator dynamic control application for energy and time saving.

ScientificWorldJournal 2013 9;2013:805343. Epub 2013 Jul 9.

Computer Engineering Department, Ardahan University, Ardahan, Turkey.

Nowadays, the increasing use of group elevator control systems owing to increasing building heights makes the development of high-performance algorithms necessary in terms of time and energy saving. Although there are many studies in the literature about this topic, they are still not effective enough because they are not able to evaluate all features of system. In this paper, a new approach of immune system-based optimal estimate is studied for dynamic control of group elevator systems. The method is mainly based on estimation of optimal way by optimizing all calls with genetic, immune system and DNA computing algorithms, and it is evaluated with a fuzzy system. The system has a dynamic feature in terms of the situation of calls and the option of the most appropriate algorithm, and it also adaptively works in terms of parameters such as the number of floors and cabins. This new approach which provides both time and energy saving was carried out in real time. The experimental results comparatively demonstrate the effects of method. With dynamic and adaptive control approach in this study carried out, a significant progress on group elevator control systems has been achieved in terms of time and energy efficiency according to traditional methods.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2013/805343DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725716PMC
February 2014
-->