Publications by authors named "Megan Altemus"

10 Publications

  • Page 1 of 1

Targeting diacylglycerol lipase reduces alcohol consumption in preclinical models.

J Clin Invest 2021 Jul 22. Epub 2021 Jul 22.

Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, United States of America.

Alcohol use disorder (AUD) is associated with substantial morbidity, mortality, and societal cost, and pharmacological treatment options for AUD are limited. The endogenous cannabinoid (eCB) signaling system is critically involved in reward processing and alcohol intake is positively correlated with release of the eCB ligand 2-Arachidonoylglycerol (2-AG) within reward neurocircuitry. Here we show that genetic and pharmacological inhibition of diacylglycerol lipase (DAGL), the rate limiting enzyme in the synthesis of 2-AG, reduces alcohol consumption in a variety of preclinical models ranging from a voluntary free-access model to aversion resistant-drinking and dependence-like drinking induced via chronic intermittent ethanol vapor exposure in mice. DAGL inhibition during either chronic alcohol consumption or protracted withdrawal was devoid of anxiogenic and depressive-like behavioral effects. Lastly, DAGL inhibition also prevented ethanol-induced suppression of GABAergic transmission onto midbrain dopamine neurons, providing mechanistic insight into how DAGL inhibition could affect alcohol reward. These data suggest reducing 2-AG signaling via inhibition of DAGL could represent an effective approach to reduce alcohol consumption across the spectrum of AUD severity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI146861DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8409586PMC
July 2021

Cyclooxygenase-2 inhibition prevents stress induced amygdala activation and anxiety-like behavior.

Brain Behav Immun 2020 10 4;89:513-517. Epub 2020 Aug 4.

Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, United States; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, United States. Electronic address:

Stress is a major risk factor for the development and exacerbation of mood and anxiety disorders, and recent studies have suggested inflammatory contributions to the pathogenesis of depression. Interestingly, pharmacological inhibition of cyclooxygenase-2 (COX-2) has shown promise in the treatment of affective disorders in small scale clinical studies; however, the mechanisms by which COX-2 inhibition affects behavioral domains relevant to affective disorders are not well understood. Here, we examined the effects of pharmacological inhibition of COX-2 with the highly selective inhibitor Lumiracoxib (LMX) on anxiety-like behavior and in vivo basolateral amygdala (BLA) neural activity in response to acute restraint stress exposure. In male mice, pretreatment with LMX prevented the increase in BLA calcium transients induced by restraint stress and prevented anxiogenic behavior seen after restraint stress exposure. Specifically, acute injection of LMX 5 mg kg reduced anxiety-like behavior in the light-dark box (LD) and elevated-zero maze (EZM). In addition, in vivo fiber photometry studies showed that acute stress increased calcium transients and the predicted action potential frequency of BLA neurons, which was also normalized by acute LMX pretreatment. These findings indicate pharmacological inhibition of COX-2 can prevent acute stress-induced increase in BLA cellular activity and anxiety-like behavior and provides insights into the neural mechanisms by which COX-2 inhibition could affect anxiety domain symptoms in patients with affective disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbi.2020.07.046DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7572634PMC
October 2020

Endocannabinoid Signaling Collapse Mediates Stress-Induced Amygdalo-Cortical Strengthening.

Neuron 2020 03 13;105(6):1062-1076.e6. Epub 2020 Jan 13.

Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; The Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA; Departments of Pharmacology and Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Nashville, TN 37232, USA. Electronic address:

Functional coupling between the amygdala and the dorsomedial prefrontal cortex (dmPFC) has been implicated in the generation of negative affective states; however, the mechanisms by which stress increases amygdala-dmPFC synaptic strength and generates anxiety-like behaviors are not well understood. Here, we show that the mouse basolateral amygdala (BLA)-prelimbic prefrontal cortex (plPFC) circuit is engaged by stress and activation of this pathway in anxiogenic. Furthermore, we demonstrate that acute stress exposure leads to a lasting increase in synaptic strength within a reciprocal BLA-plPFC-BLA subcircuit. Importantly, we identify 2-arachidonoylglycerol (2-AG)-mediated endocannabinoid signaling as a key mechanism limiting glutamate release at BLA-plPFC synapses and the functional collapse of multimodal 2-AG signaling as a molecular mechanism leading to persistent circuit-specific synaptic strengthening and anxiety-like behaviors after stress exposure. These data suggest that circuit-specific impairment in 2-AG signaling could facilitate functional coupling between the BLA and plPFC and the translation of environmental stress to affective pathology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2019.12.024DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7992313PMC
March 2020

An endocannabinoid-regulated basolateral amygdala-nucleus accumbens circuit modulates sociability.

J Clin Invest 2020 04;130(4):1728-1742

Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

Deficits in social interaction (SI) are a core symptom of autism spectrum disorders (ASDs); however, treatments for social deficits are notably lacking. Elucidating brain circuits and neuromodulatory signaling systems that regulate sociability could facilitate a deeper understanding of ASD pathophysiology and reveal novel treatments for ASDs. Here we found that in vivo optogenetic activation of the basolateral amygdala-nucleus accumbens (BLA-NAc) glutamatergic circuit reduced SI and increased social avoidance in mice. Furthermore, we found that 2-arachidonoylglycerol (2-AG) endocannabinoid signaling reduced BLA-NAc glutamatergic activity and that pharmacological 2-AG augmentation via administration of JZL184, a monoacylglycerol lipase inhibitor, blocked SI deficits associated with in vivo BLA-NAc stimulation. Additionally, optogenetic inhibition of the BLA-NAc circuit markedly increased SI in the Shank3B-/- mouse, an ASD model with substantial SI impairment, without affecting SI in WT mice. Finally, we demonstrated that JZL184 delivered systemically or directly to the NAc also normalized SI deficits in Shank3B-/- mice, while ex vivo JZL184 application corrected aberrant NAc excitatory and inhibitory neurotransmission and reduced BLA-NAc-elicited feed-forward inhibition of NAc neurons in Shank3B-/- mice. These data reveal circuit-level and neuromodulatory mechanisms regulating social function relevant to ASDs and suggest 2-AG augmentation could reduce social deficits via modulation of excitatory and inhibitory neurotransmission in the NAc.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI131752DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7108917PMC
April 2020

Breast cancers utilize hypoxic glycogen stores via PYGB, the brain isoform of glycogen phosphorylase, to promote metastatic phenotypes.

PLoS One 2019 19;14(9):e0220973. Epub 2019 Sep 19.

Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America.

In breast cancer, tumor hypoxia has been linked to poor prognosis and increased metastasis. Hypoxia activates transcriptional programs in cancer cells that lead to increased motility and invasion, as well as various metabolic changes. One of these metabolic changes, an increase in glycogen metabolism, has been further associated with protection from reactive oxygen species damage that may lead to premature senescence. Here we report that breast cancer cells significantly increase glycogen stores in response to hypoxia. We found that knockdown of the brain isoform of an enzyme that catalyzes glycogen breakdown, glycogen phosphorylase B (PYGB), but not the liver isoform, PYGL, inhibited glycogen utilization in estrogen receptor negative and positive breast cancer cells; whereas both independently inhibited glycogen utilization in the normal-like breast epithelial cell line MCF-10A. Functionally, PYGB knockdown and the resulting inhibition of glycogen utilization resulted in significantly decreased wound-healing capability in MCF-7 cells and a decrease in invasive potential of MDA-MB-231 cells. Thus, we identify PYGB as a novel metabolic target with potential applications in the management and/or prevention of metastasis in breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220973PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6752868PMC
March 2020

A platform for artificial intelligence based identification of the extravasation potential of cancer cells into the brain metastatic niche.

Lab Chip 2019 03;19(7):1162-1173

Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.

Brain metastases are the most lethal complication of advanced cancer; therefore, it is critical to identify when a tumor has the potential to metastasize to the brain. There are currently no interventions that shed light on the potential of primary tumors to metastasize to the brain. We constructed and tested a platform to quantitatively profile the dynamic phenotypes of cancer cells from aggressive triple negative breast cancer cell lines and patient derived xenografts (PDXs), generated from a primary tumor and brain metastases from tumors of diverse organs of origin. Combining an advanced live cell imaging algorithm and artificial intelligence, we profile cancer cell extravasation within a microfluidic blood-brain niche (μBBN) chip, to detect the minute differences between cells with brain metastatic potential and those without with a PPV of 0.91 in the context of this study. The results show remarkably sharp and reproducible distinction between cells that do and those which do not metastasize inside of the device.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8lc01387jDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510031PMC
March 2019

Detection of Cyclooxygenase-2-Derived Oxygenation Products of the Endogenous Cannabinoid 2-Arachidonoylglycerol in Mouse Brain.

ACS Chem Neurosci 2018 07 9;9(7):1552-1559. Epub 2018 May 9.

Cyclooxygenase-2 (COX-2) catalyzes the formation of prostaglandins, which are involved in immune regulation, vascular function, and synaptic signaling. COX-2 also inactivates the endogenous cannabinoid (eCB) 2-arachidonoylglycerol (2-AG) via oxygenation of its arachidonic acid backbone to form a variety of prostaglandin glyceryl esters (PG-Gs). Although this oxygenation reaction is readily observed in vitro and in intact cells, detection of COX-2-derived 2-AG oxygenation products has not been previously reported in neuronal tissue. Here we show that 2-AG is metabolized in the brain of transgenic COX-2-overexpressing mice and mice treated with lipopolysaccharide to form multiple species of PG-Gs that are detectable only when monoacylglycerol lipase is concomitantly blocked. Formation of these PG-Gs is prevented by acute pharmacological inhibition of COX-2. These data provide evidence that neuronal COX-2 is capable of oxygenating 2-AG to form a variety PG-Gs in vivo and support further investigation of the physiological functions of PG-Gs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschemneuro.7b00499DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6081739PMC
July 2018

Loss of PTEN promotes formation of signaling-capable clathrin-coated pits.

J Cell Sci 2018 04 26;131(8). Epub 2018 Apr 26.

Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA

Defective endocytosis and vesicular trafficking of signaling receptors has recently emerged as a multifaceted hallmark of malignant cells. Clathrin-coated pits (CCPs) display highly heterogeneous dynamics on the plasma membrane where they can take from 20 s to over 1 min to form cytosolic coated vesicles. Despite the large number of cargo molecules that traffic through CCPs, it is not well understood whether signaling receptors activated in cancer, such as epidermal growth factor receptor (EGFR), are regulated through a specific subset of CCPs. The signaling lipid phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P], which is dephosphorylated by phosphatase and tensin homolog (PTEN), is a potent tumorigenic signaling lipid. By using total internal reflection fluorescence microscopy and automated tracking and detection of CCPs, we found that EGF-bound EGFR and PTEN are enriched in a distinct subset of short-lived CCPs that correspond with clathrin-dependent EGF-induced signaling. We demonstrated that PTEN plays a role in the regulation of CCP dynamics. Furthermore, increased PI(3,4,5)P resulted in higher proportion of short-lived CCPs, an effect that recapitulates PTEN deletion. Altogether, our findings provide evidence for the existence of short-lived 'signaling-capable' CCPs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.208926DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5963840PMC
April 2018

Macrophages Enhance Migration in Inflammatory Breast Cancer Cells via RhoC GTPase Signaling.

Sci Rep 2016 12 19;6:39190. Epub 2016 Dec 19.

Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.

Inflammatory breast cancer (IBC) is the most lethal form of breast cancer. All IBC patients have lymph node involvement and one-third of patients already have distant metastasis at diagnosis. This propensity for metastasis is a hallmark of IBC distinguishing it from less lethal non-inflammatory breast cancers (nIBC). Genetic profiling studies have been conducted to differentiate IBC from nIBC, but no IBC cancer-cell-specific gene signature has been identified. We hypothesized that a tumor-extrinsic factor, notably tumor-associated macrophages, promotes and contributes to IBC's extreme metastatic phenotype. To this end, we studied the effect of macrophage-conditioned media (MCM) on IBC. We show that two IBC cell lines are hyper-responsive to MCM as compared to normal-like breast and aggressive nIBC cell lines. We further interrogated IBC's hyper-responsiveness to MCM using a microfluidic migration device, which permits individual cell migration path tracing. We found the MCM "primes" the IBC cells' cellular machinery to become extremely migratory in response to a chemoattractant. We determined that interleukins -6, -8, and -10 within the MCM are sufficient to stimulate this enhanced IBC migration effect, and that the known metastatic oncogene, RhoC GTPase, is necessary for the enhanced migration response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/srep39190DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5171813PMC
December 2016

Presymptomatic glutamate levels in prefrontal cortex in the Hdh(CAG150) mouse model of Huntington's disease.

J Huntingtons Dis 2014 ;3(4):387-99

Central Michigan University, Neuroscience Program, East Campus Drive, Mount Pleasant, MI, USA.

Background: Huntington's disease (HD) is a genetic neurodegenerative disorder with few available treatments. Clinical observations suggest prefrontal dysfunction in early stages of HD is associated with altered glutamate transport. Evidence from the R6/2 mouse model suggests an abnormal increase in glutamate signaling in the sensorimotor cortex and striatum.

Objective: The present study was designed to determine if a similar deficit in glutamate function occurs in the prefrontal cortex (PFC) of Hdh(CAG150) mice.

Methods: We used the following groups of 40 week old male and female Hdh(CAG150) mice: homozygote n = 7, heterozygote n = 7, wild type n = 6. Motor coordination was evaluated using a hanging wire grid test and a balance beam. Microdialysis measurements were taken from the PFC of freely moving mice while glutamate transporters were inhibited by L-trans-pyrrolidine-2, 4-dicarboxylate (PDC) and compared to baseline glutamate levels.

Results: RESULTS indicated an elevation in glutamate levels in response to PDC but no significant difference among genotype groups. When comparing wild type and homozygote alone, a significant difference in total extracellular glutamate was observed. Contrary to our original hypothesis, the homozygote group had lower glutamate levels compared to their wild type counterparts. Furthermore, there was a significant difference in GABA measurements across genotypes.

Conclusions: Our results suggest a mechanistic dichotomy between R6/2 and Hdh(CAG150) mice and underscores the need to select the appropriate HD mouse model when assessing therapeutic interventions. In particular, the time when animals are evaluated can have a significant impact on behavioral and physiological measures and so should be carefully considered.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3233/JHD-140114DOI Listing
April 2015
-->