Publications by authors named "Matthias Rall"

2 Publications

  • Page 1 of 1

SBMLsqueezer 2: context-sensitive creation of kinetic equations in biochemical networks.

BMC Syst Biol 2015 Oct 9;9:68. Epub 2015 Oct 9.

Center for Bioinformatics Tuebingen (ZBIT), University of Tuebingen, Sand 1, Tübingen, 72076, Germany.

Background: The size and complexity of published biochemical network reconstructions are steadily increasing, expanding the potential scale of derived computational models. However, the construction of large biochemical network models is a laborious and error-prone task. Automated methods have simplified the network reconstruction process, but building kinetic models for these systems is still a manually intensive task. Appropriate kinetic equations, based upon reaction rate laws, must be constructed and parameterized for each reaction. The complex test-and-evaluation cycles that can be involved during kinetic model construction would thus benefit from automated methods for rate law assignment.

Results: We present a high-throughput algorithm to automatically suggest and create suitable rate laws based upon reaction type according to several criteria. The criteria for choices made by the algorithm can be influenced in order to assign the desired type of rate law to each reaction. This algorithm is implemented in the software package SBMLsqueezer 2. In addition, this program contains an integrated connection to the kinetics database SABIO-RK to obtain experimentally-derived rate laws when desired.

Conclusions: The described approach fills a heretofore absent niche in workflows for large-scale biochemical kinetic model construction. In several applications the algorithm has already been demonstrated to be useful and scalable. SBMLsqueezer is platform independent and can be used as a stand-alone package, as an integrated plugin, or through a web interface, enabling flexible solutions and use-case scenarios.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
October 2015

Path2Models: large-scale generation of computational models from biochemical pathway maps.

BMC Syst Biol 2013 Nov 1;7:116. Epub 2013 Nov 1.

European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.

Background: Systems biology projects and omics technologies have led to a growing number of biochemical pathway models and reconstructions. However, the majority of these models are still created de novo, based on literature mining and the manual processing of pathway data.

Results: To increase the efficiency of model creation, the Path2Models project has automatically generated mathematical models from pathway representations using a suite of freely available software. Data sources include KEGG, BioCarta, MetaCyc and SABIO-RK. Depending on the source data, three types of models are provided: kinetic, logical and constraint-based. Models from over 2 600 organisms are encoded consistently in SBML, and are made freely available through BioModels Database at Each model contains the list of participants, their interactions, the relevant mathematical constructs, and initial parameter values. Most models are also available as easy-to-understand graphical SBGN maps.

Conclusions: To date, the project has resulted in more than 140 000 freely available models. Such a resource can tremendously accelerate the development of mathematical models by providing initial starting models for simulation and analysis, which can be subsequently curated and further parameterized.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
November 2013