Publications by authors named "Matthew T Weirauch"

134 Publications

Runx Transcription Factors in T Cells-What Is Beyond Thymic Development?

Front Immunol 2021 6;12:701924. Epub 2021 Aug 6.

Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.

Runx proteins (also known as Runt-domain transcription factors) have been studied for a long time as key regulators of cellular differentiation. RUNX2 has been described as essential for osteogenesis, whereas RUNX1 and RUNX3 are known to control blood cell development during different stages of cell lineage specification. However, recent studies show evidence of complex relationships between RUNX proteins, chromatin-modifying machinery, the cytoskeleton and different transcription factors in various non-embryonic contexts, including mature T cell homeostasis, inflammation and cancer. In this review, we discuss the diversity of Runx functions in mature T helper cells, such as production of cytokines and chemokines by different CD4 T cell populations; apoptosis; and immunologic memory acquisition. We then briefly cover recent findings about the contribution of and to various immunologic diseases. Finally, we discuss areas that require further study to better understand the role that Runx proteins play in inflammation and immunity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2021.701924DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8377396PMC
August 2021

Aiolos regulates eosinophil migration into tissues.

Mucosal Immunol 2021 Aug 2. Epub 2021 Aug 2.

Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.

Expression of Ikaros family transcription factor IKZF3 (Aiolos) increases during murine eosinophil lineage commitment and maturation. Herein, we investigated Aiolos expression and function in mature human and murine eosinophils. Murine eosinophils deficient in Aiolos demonstrated gene expression changes in pathways associated with granulocyte-mediated immunity, chemotaxis, degranulation, ERK/MAPK signaling, and extracellular matrix organization; these genes had ATAC peaks within 1 kB of the TSS that were enriched for Aiolos-binding motifs. Global Aiolos deficiency reduced eosinophil frequency within peripheral tissues during homeostasis; a chimeric mouse model demonstrated dependence on intrinsic Aiolos expression by eosinophils. Aiolos deficiency reduced eosinophil CCR3 surface expression, intracellular ERK1/2 signaling, and CCL11-induced actin polymerization, emphasizing an impaired functional response. Aiolos-deficient eosinophils had reduced tissue accumulation in chemokine-, antigen-, and IL-13-driven inflammatory experimental models, all of which at least partially depend on CCR3 signaling. Human Aiolos expression was associated with active chromatin marks enriched for IKZF3, PU.1, and GATA-1-binding motifs within eosinophil-specific histone ChIP-seq peaks. Furthermore, treating the EOL-1 human eosinophilic cell line with lenalidomide yielded a dose-dependent decrease in Aiolos. These collective data indicate that eosinophil homing during homeostatic and inflammatory allergic states is Aiolos-dependent, identifying Aiolos as a potential therapeutic target for eosinophilic disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41385-021-00416-4DOI Listing
August 2021

Epigenetic Analysis of the Chromatin Landscape Identifies a Repertoire of Murine Eosinophil-Specific PU.1-Bound Enhancers.

J Immunol 2021 08 30;207(4):1044-1054. Epub 2021 Jul 30.

Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH;

Eosinophils develop in the bone marrow from hematopoietic progenitors into mature cells capable of a plethora of immunomodulatory roles via the choreographed process of eosinophilopoiesis. However, the gene regulatory elements and transcription factors (TFs) orchestrating this process remain largely unknown. The potency and resulting diversity fundamental to an eosinophil's complex immunomodulatory functions and tissue specialization likely result from dynamic epigenetic regulation of the eosinophil genome, a dynamic eosinophil regulome. In this study, we applied a global approach using broad-range, next-generation sequencing to identify a repertoire of eosinophil-specific enhancers. We identified over 8200 active enhancers located within 1-20 kB of expressed eosinophil genes. TF binding motif analysis revealed PU.1 () motif enrichment in eosinophil enhancers, and chromatin immunoprecipitation coupled with massively parallel sequencing confirmed PU.1 binding in likely enhancers of genes highly expressed in eosinophils. A substantial proportion (>25%) of these PU.1-bound enhancers were unique to murine, culture-derived eosinophils when compared among enhancers of highly expressed genes of three closely related myeloid cell subsets (macrophages, neutrophils, and immature granulocytes). Gene ontology analysis of eosinophil-specific, PU.1-bound enhancers revealed enrichment for genes involved in migration, proliferation, degranulation, and survival. Furthermore, eosinophil-specific superenhancers were enriched in genes whose homologs are associated with risk loci for eosinophilia and allergic diseases. Our collective data identify eosinophil-specific enhancers regulating key eosinophil genes through epigenetic mechanisms (H3K27 acetylation) and TF binding (PU.1).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.2000207DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355082PMC
August 2021

Genomics and transcriptomics yields a system-level view of the biology of the pathogen Naegleria fowleri.

BMC Biol 2021 Jul 22;19(1):142. Epub 2021 Jul 22.

Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.

Background: The opportunistic pathogen Naegleria fowleri establishes infection in the human brain, killing almost invariably within 2 weeks. The amoeba performs piece-meal ingestion, or trogocytosis, of brain material causing direct tissue damage and massive inflammation. The cellular basis distinguishing N. fowleri from other Naegleria species, which are all non-pathogenic, is not known. Yet, with the geographic range of N. fowleri advancing, potentially due to climate change, understanding how this pathogen invades and kills is both important and timely.

Results: Here, we report an -omics approach to understanding N. fowleri biology and infection at the system level. We sequenced two new strains of N. fowleri and performed a transcriptomic analysis of low- versus high-pathogenicity N. fowleri cultured in a mouse infection model. Comparative analysis provides an in-depth assessment of encoded protein complement between strains, finding high conservation. Molecular evolutionary analyses of multiple diverse cellular systems demonstrate that the N. fowleri genome encodes a similarly complete cellular repertoire to that found in free-living N. gruberi. From transcriptomics, neither stress responses nor traits conferred from lateral gene transfer are suggested as critical for pathogenicity. By contrast, cellular systems such as proteases, lysosomal machinery, and motility, together with metabolic reprogramming and novel N. fowleri proteins, are all implicated in facilitating pathogenicity within the host. Upregulation in mouse-passaged N. fowleri of genes associated with glutamate metabolism and ammonia transport suggests adaptation to available carbon sources in the central nervous system.

Conclusions: In-depth analysis of Naegleria genomes and transcriptomes provides a model of cellular systems involved in opportunistic pathogenicity, uncovering new angles to understanding the biology of a rare but highly fatal pathogen.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12915-021-01078-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8296547PMC
July 2021

TSLP disease-associated genetic variants combined with airway TSLP expression influence asthma risk.

J Allergy Clin Immunol 2021 Jun 7. Epub 2021 Jun 7.

Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio. Electronic address:

Background: Thymic stromal lymphopoietin (TSLP) is an epithelial-derived cytokine important in initiation of allergic inflammation. Single nucleotide polymorphisms (SNPs) in TSLP are associated with asthma, yet studies have shown inconsistent associations between circulating TSLP and asthma. Studies that integrate the combined effects of TSLP genotype, TSLP mRNA, circulating TSLP levels, and asthma outcome are lacking.

Objectives: This study sought to recruit a novel cohort based on asthma-relevant TSLP SNPs and determine their impact on TSLP mRNA expression and TSLP circulating protein levels, and their individual and combined effects on asthma.

Methods: This study developed an algorithm to prioritize TSLP SNPs and recruited 51 carriers and noncarriers based on TSLP genotypes. TSLP mRNA was quantified in nasal epithelial cells and circulating TSLP levels in plasma. This study determined the associations of defined TSLP risk genotypes and/or TSLP mRNA and protein levels with asthma.

Results: TSLP mRNA expression, but not circulating TSLP, was significantly increased in people who are asthmatic compared with in people who are nonasthmatic (P = .007; odds ratio, 1.44). Notably, 90% of children with the defined TSLP risk genotypes and high nasal TSLP mRNA expression (top tertile) had asthma compared with 40% of subjects without risk genotypes and with low TSLP expression (bottom tertile) (P = .024). No association between circulating TSLP and asthma was observed.

Conclusions: Collectively, these data suggest childhood asthma is modified by the combined effects of TSLP genotype and TSLP expression in the nasal epithelium. The increased asthma risk likely manifests when genetic variation enables expression quantitative trait loci in the TSLP locus to elevate TSLP. It is important to consider both biomarkers when factoring asthma risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaci.2021.05.033DOI Listing
June 2021

Runx1 shapes the chromatin landscape via a cascade of direct and indirect targets.

PLoS Genet 2021 Jun 10;17(6):e1009574. Epub 2021 Jun 10.

Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America.

Runt-related transcription factor 1 (Runx1) can act as both an activator and a repressor. Here we show that CRISPR-mediated deletion of Runx1 in mouse metanephric mesenchyme-derived mK4 cells results in large-scale genome-wide changes to chromatin accessibility and gene expression. Open chromatin regions near down-regulated loci enriched for Runx sites in mK4 cells lose chromatin accessibility in Runx1 knockout cells, despite remaining Runx2-bound. Unexpectedly, regions near upregulated genes are depleted of Runx sites and are instead enriched for Zeb transcription factor binding sites. Re-expressing Zeb2 in Runx1 knockout cells restores suppression, and CRISPR mediated deletion of Zeb1 and Zeb2 phenocopies the gained expression and chromatin accessibility changes seen in Runx1KO due in part to subsequent activation of factors like Grhl2. These data confirm that Runx1 activity is uniquely needed to maintain open chromatin at many loci, and demonstrate that Zeb proteins are required and sufficient to maintain Runx1-dependent genome-scale repression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1009574DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8219162PMC
June 2021

Olaparib Inhibits Tumor Growth of Hepatoblastoma in Patient-Derived Xenograft Models.

Hepatology 2021 May 26. Epub 2021 May 26.

Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.

Background And Aims: Hepatoblastoma (HBL) is a devastating pediatric liver cancer with multiple treatment options, but it ultimately requires surgery for a cure. The most malicious form of HBL is a chemo-resistant aggressive tumor that is characterized by rapid growth, metastases, and poor response to treatment. Very little is known of the mechanisms of aggressive HBL, and recent focuses have been on developing alternative treatment strategies. In this study, we examined the role of human chromosomal regions, called aggressive liver cancer domains (ALCDs), in liver cancer and evaluated the mechanisms that activate ALCDs in aggressive HBL.

Results: We found that ALCDs are critical regions of the human genome that are located on all human chromosomes, preferentially in intronic regions of the oncogenes and other cancer-associated genes. In aggressive HBL and in patients with Hepatocellular (HCC), JNK1/2 phosphorylates p53 at Ser6, which leads to the ph-S6-p53 interacting with and delivering the poly(adenosine diphosphate ribose) polymerase 1 (PARP1)/Ku70 complexes on the oncogenes containing ALCDs. The ph-S6-p53-PARP1 complexes open chromatin around ALCDs and activate multiple oncogenic pathways. We found that the inhibition of PARP1 in patient-derived xenografts (PDXs) from aggressive HBL by the Food and Drug Administration (FDA)-approved inhibitor olaparib (Ola) significantly inhibits tumor growth. Additionally, this is associated with the reduction of the ph-S6-p53/PARP1 complexes and subsequent inhibition of ALCD-dependent oncogenes. Studies in cultured cancer cells confirmed that the Ola-mediated inhibition of the ph-S6-p53-PARP1-ALCD axis inhibits proliferation of cancer cells.

Conclusions: In this study, we showed that aggressive HBL is moderated by ALCDs, which are activated by the ph-S6-p53/PARP1 pathway. By using the PARP1 inhibitor Ola, we suppressed tumor growth in HBL-PDX models, which demonstrated its utility in future clinical models.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hep.31919DOI Listing
May 2021

PKM2-dependent metabolic skewing of hepatic Th17 cells regulates pathogenesis of non-alcoholic fatty liver disease.

Cell Metab 2021 Jun 17;33(6):1187-1204.e9. Epub 2021 May 17.

Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; The Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA. Electronic address:

Emerging evidence suggests a key contribution to non-alcoholic fatty liver disease (NAFLD) pathogenesis by Th17 cells. The pathogenic characteristics and mechanisms of hepatic Th17 cells, however, remain unknown. Here, we uncover and characterize a distinct population of inflammatory hepatic CXCR3Th17 (ihTh17) cells sufficient to exacerbate NAFLD pathogenesis. Hepatic ihTh17 cell accrual was dependent on the liver microenvironment and CXCR3 axis activation. Mechanistically, the pathogenic potential of ihTh17 cells correlated with increased chromatin accessibility, glycolytic output, and concomitant production of IL-17A, IFNγ, and TNFα. Modulation of glycolysis using 2-DG or cell-specific PKM2 deletion was sufficient to reverse ihTh17-centric inflammatory vigor and NAFLD severity. Importantly, ihTh17 cell characteristics, CXCR3 axis activation, and hepatic expression of glycolytic genes were conserved in human NAFLD. Together, our data show that the steatotic liver microenvironment regulates Th17 cell accrual, metabolism, and competence toward an ihTh17 fate. Modulation of these pathways holds potential for development of novel therapeutic strategies for NAFLD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmet.2021.04.018DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8237408PMC
June 2021

TOP1 inhibition therapy protects against SARS-CoV-2-induced lethal inflammation.

Cell 2021 05 30;184(10):2618-2632.e17. Epub 2021 Mar 30.

Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently affecting millions of lives worldwide. Large retrospective studies indicate that an elevated level of inflammatory cytokines and pro-inflammatory factors are associated with both increased disease severity and mortality. Here, using multidimensional epigenetic, transcriptional, in vitro, and in vivo analyses, we report that topoisomerase 1 (TOP1) inhibition suppresses lethal inflammation induced by SARS-CoV-2. Therapeutic treatment with two doses of topotecan (TPT), an FDA-approved TOP1 inhibitor, suppresses infection-induced inflammation in hamsters. TPT treatment as late as 4 days post-infection reduces morbidity and rescues mortality in a transgenic mouse model. These results support the potential of TOP1 inhibition as an effective host-directed therapy against severe SARS-CoV-2 infection. TPT and its derivatives are inexpensive clinical-grade inhibitors available in most countries. Clinical trials are needed to evaluate the efficacy of repurposing TOP1 inhibitors for severe coronavirus disease 2019 (COVID-19) in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2021.03.051DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8008343PMC
May 2021

Methylation quantitative trait locus analysis of chronic postsurgical pain uncovers epigenetic mediators of genetic risk.

Epigenomics 2021 Apr 6;13(8):613-630. Epub 2021 Apr 6.

Department of Anatomy, Physiology & Cell biology, California National Primate Research Center, University of California, Davis, CA 95616, USA.

Overlap of pathways enriched by single nucleotide polymorphisms and DNA-methylation underlying chronic postsurgical pain (CPSP), prompted pilot study of CPSP-associated methylation quantitative trait loci (meQTL). Children undergoing spine-fusion were recruited prospectively. Logistic-regression for genome- and epigenome-wide CPSP association and DNA-methylation-single nucleotide polymorphism association/mediation analyses to identify meQTLs were followed by functional genomics analyses. CPSP (n = 20/58) and non-CPSP groups differed in pain-measures. Of 2753 meQTLs, DNA-methylation at 127 cytosine-guanine dinucleotides mediated association of 470 meQTLs with CPSP (p < 0.05). At PARK16 locus, CPSP risk meQTLs were associated with decreased DNA-methylation at and increased DNA-methylation at Corresponding blood eQTLs (GTEx) and cytosine-guanine dinucleotide-loci enrichment for histone marks, transcription factor binding sites and ATAC-seq peaks suggest altered transcription factor-binding. CPSP-associated meQTLs indicate epigenetic mechanisms mediate genetic risk. Clinical trial registration: NCT01839461, NCT01731873 (ClinicalTrials.gov).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2217/epi-2020-0424DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8173520PMC
April 2021

Fezf functions as a transcriptional repressor to direct layer-specific synaptic connectivity in the fly visual system.

Proc Natl Acad Sci U S A 2021 Mar;118(13)

Department of Neurobiology, Harvard Medical School, Boston, MA 02115;

The layered compartmentalization of synaptic connections, a common feature of nervous systems, underlies proper connectivity between neurons and enables parallel processing of neural information. However, the stepwise development of layered neuronal connections is not well understood. The medulla neuropil of the visual system, which comprises 10 discrete layers (M1 to M10), where neural computations underlying distinct visual features are processed, serves as a model system for understanding layered synaptic connectivity. The first step in establishing layer-specific connectivity in the outer medulla (M1 to M6) is the innervation by lamina (L) neurons of one of two broad, primordial domains that will subsequently expand and transform into discrete layers. We previously found that the transcription factor dFezf cell-autonomously directs L3 lamina neurons to their proper primordial broad domain before they form synapses within the developing M3 layer. Here, we show that dFezf controls L3 broad domain selection through temporally precise transcriptional repression of the transcription factor (sloppy paired 1). In wild-type L3 neurons, is transiently expressed at a low level during broad domain selection. When is deleted, expression is up-regulated, and ablation of fully rescues the defect of broad domain selection in -null L3 neurons. Although the early, transient expression of is expendable for broad domain selection, it is surprisingly necessary for the subsequent L3 innervation of the M3 layer. DFezf thus functions as a transcriptional repressor to coordinate the temporal dynamics of a transcriptional cascade that orchestrates sequential steps of layer-specific synapse formation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2025530118DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8020669PMC
March 2021

IRF1 governs the differential interferon-stimulated gene responses in human monocytes and macrophages by regulating chromatin accessibility.

Cell Rep 2021 Mar;34(12):108891

Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA. Electronic address:

Myeloid lineage cells use TLRs to recognize and respond to diverse microbial ligands. Although unique transcription factors dictate the outcome of specific TLR signaling, whether lineage-specific differences exist to further modulate the quality of TLR-induced inflammation remains unclear. Comprehensive analysis of global gene transcription in human monocytes, monocyte-derived macrophages, and monocyte-derived dendritic cells stimulated with various TLR ligands identifies multiple lineage-specific, TLR-responsive gene programs. Monocytes are hyperresponsive to TLR7/8 stimulation that correlates with the higher expression of the receptors. While macrophages and monocytes express similar levels of TLR4, macrophages, but not monocytes, upregulate interferon-stimulated genes (ISGs) in response to TLR4 stimulation. We find that TLR4 signaling in macrophages uniquely engages transcription factor IRF1, which facilitates the opening of ISG loci for transcription. This study provides a critical mechanistic basis for lineage-specific TLR responses and uncovers IRF1 as a master regulator for the ISG transcriptional program in human macrophages.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2021.108891DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8300000PMC
March 2021

The genome of the stable fly, Stomoxys calcitrans, reveals potential mechanisms underlying reproduction, host interactions, and novel targets for pest control.

BMC Biol 2021 03 10;19(1):41. Epub 2021 Mar 10.

Department of Computer Science & Engineering, Department of Biochemistry & Biophysics, Texas A & M University, College Station, TX, USA.

Background: The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies.

Results: This study examines stable fly biology by utilizing a combination of high-quality genome sequencing and RNA-Seq analyses targeting multiple developmental stages and tissues. In conjunction, 1600 genes were manually curated to characterize genetic features related to stable fly reproduction, vector host interactions, host-microbe dynamics, and putative targets for control. Most notable was characterization of genes associated with reproduction and identification of expanded gene families with functional associations to vision, chemosensation, immunity, and metabolic detoxification pathways.

Conclusions: The combined sequencing, assembly, and curation of the male stable fly genome followed by RNA-Seq and downstream analyses provide insights necessary to understand the biology of this important pest. These resources and new data will provide the groundwork for expanding the tools available to control stable fly infestations. The close relationship of Stomoxys to other blood-feeding (horn flies and Glossina) and non-blood-feeding flies (house flies, medflies, Drosophila) will facilitate understanding of the evolutionary processes associated with development of blood feeding among the Cyclorrhapha.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12915-021-00975-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7944917PMC
March 2021

Global discovery of lupus genetic risk variant allelic enhancer activity.

Nat Commun 2021 03 12;12(1):1611. Epub 2021 Mar 12.

Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Genome-wide association studies of Systemic Lupus Erythematosus (SLE) nominate 3073 genetic variants at 91 risk loci. To systematically screen these variants for allelic transcriptional enhancer activity, we construct a massively parallel reporter assay (MPRA) library comprising 12,396 DNA oligonucleotides containing the genomic context around every allele of each SLE variant. Transfection into the Epstein-Barr virus-transformed B cell line GM12878 reveals 482 variants with enhancer activity, with 51 variants showing genotype-dependent (allelic) enhancer activity at 27 risk loci. Comparison of MPRA results in GM12878 and Jurkat T cell lines highlights shared and unique allelic transcriptional regulatory mechanisms at SLE risk loci. In-depth analysis of allelic transcription factor (TF) binding at and around allelic variants identifies one class of TFs whose DNA-binding motif tends to be directly altered by the risk variant and a second class of TFs that bind allelically without direct alteration of their motif by the variant. Collectively, our approach provides a blueprint for the discovery of allelic gene regulation at risk loci for any disease and offers insight into the transcriptional regulatory mechanisms underlying SLE.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-21854-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7955039PMC
March 2021

Deciphering cis-regulatory grammar with deep learning.

Nat Genet 2021 03;53(3):266-268

Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-021-00814-1DOI Listing
March 2021

Mechanisms of stearoyl CoA desaturase inhibitor sensitivity and acquired resistance in cancer.

Sci Adv 2021 Feb 10;7(7). Epub 2021 Feb 10.

Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

The lipogenic enzyme stearoyl CoA desaturase (SCD) plays a key role in tumor lipid metabolism and membrane architecture. SCD is often up-regulated and a therapeutic target in cancer. Here, we report the unexpected finding that median expression of SCD is low in glioblastoma relative to normal brain due to hypermethylation and unintentional monoallelic co-deletion with phosphatase and tensin homolog (PTEN) in a subset of patients. Cell lines from this subset expressed undetectable SCD, yet retained residual SCD enzymatic activity. Unexpectedly, these lines evolved to survive independent of SCD through unknown mechanisms. Cell lines that escaped such genetic and epigenetic alterations expressed higher levels of SCD and were highly dependent on SCD for survival. Last, we identify that SCD-dependent lines acquire resistance through a previously unknown FBJ murine osteosarcoma viral oncogene homolog B (FOSB)-mediated mechanism. Accordingly, FOSB inhibition blunted acquired resistance and extended survival of tumor-bearing mice treated with SCD inhibitor.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciadv.abd7459DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875532PMC
February 2021

Conserved regulatory logic at accessible and inaccessible chromatin during the acute inflammatory response in mammals.

Nat Commun 2021 01 25;12(1):567. Epub 2021 Jan 25.

Hospital for Sick Children, Genetics and Genome Biology, Toronto, Canada.

The regulatory elements controlling gene expression during acute inflammation are not fully elucidated. Here we report the identification of a set of NF-κB-bound elements and common chromatin landscapes underlying the acute inflammatory response across cell-types and mammalian species. Using primary vascular endothelial cells (human/mouse/bovine) treated with the pro-inflammatory cytokine, Tumor Necrosis Factor-α, we identify extensive (~30%) conserved orthologous binding of NF-κB to accessible, as well as nucleosome-occluded chromatin. Regions with the highest NF-κB occupancy pre-stimulation show dramatic increases in NF-κB binding and chromatin accessibility post-stimulation. These 'pre-bound' regions are typically conserved (~56%), contain multiple NF-κB motifs, are utilized by diverse cell types, and overlap rare non-coding mutations and common genetic variation associated with both inflammatory and cardiovascular phenotypes. Genetic ablation of conserved, 'pre-bound' NF-κB regions within the super-enhancer associated with the chemokine-encoding CCL2 gene and elsewhere supports the functional relevance of these elements.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-20765-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7835376PMC
January 2021

Replication and meta-analyses nominate numerous eosinophilic esophagitis risk genes.

J Allergy Clin Immunol 2021 01 23;147(1):255-266. Epub 2020 Oct 23.

Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio. Electronic address:

Background: Eosinophilic esophagitis (EoE) is an emerging, chronic, rare allergic disease associated with marked eosinophil accumulation in the esophagus. Previous genome-wide association studies have provided strong evidence for 3 genome-wide susceptibility loci.

Objective: We sought to replicate known and suggestive EoE genetic risk loci and conduct a meta-analysis of previously reported data sets.

Methods: An EoE-Custom single-nucleotide polymophism (SNP) Chip containing 956 candidate EoE risk single-nucleotide polymorphisms was used to genotype 627 cases and 365 controls. Statistical power was enhanced by adding 1959 external controls and performing meta-analyses with 2 independent EoE genome-wide association studies.

Results: Meta-analysis identified replicated association and genome-wide significance at 6 loci: 2p23 (2 independent genetic effects) and 5q22, 10p14, 11q13, and 16p13. Seven additional loci were identified at suggestive significance (P < 10): 1q31, 5q23, 6q15, 6q21, 8p21, 17q12, and 22q13. From these risk loci, 13 protein-coding EoE candidate risk genes were expressed in a genotype-dependent manner. EoE risk genes were expressed in disease-relevant cell types, including esophageal epithelia, fibroblasts, and immune cells, with some expressed as a function of disease activity. The genetic risk burden of EoE-associated genetic variants was markedly larger in cases relative to controls (P < 10); individuals with the highest decile of genetic burden had greater than 12-fold risk of EoE compared with those within the lowest decile.

Conclusions: This study extends the genetic underpinnings of EoE, highlighting 13 genes whose genotype-dependent expression expands our etiologic understanding of EoE and provides a framework for a polygenic risk score to be validated in future studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaci.2020.10.018DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8082436PMC
January 2021

Comprehensive Review of Steroid-Sensitive Nephrotic Syndrome Genetic Risk Loci and Transcriptional Regulation as a Possible Mechanistic Link to Disease Risk.

Kidney Int Rep 2021 Jan 16;6(1):187-195. Epub 2020 Oct 16.

Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.

Introduction: The etiology of steroid-sensitive nephrotic syndrome (SSNS) is not well understood. Genetic studies have established common single nucleotide polymorphisms (SNPs) that are associated with increased SSNS disease risk. We review previous genetic association studies of SSNS and nominate particular transcriptional regulators and immune cells as potential key players in the etiology of this disease.

Methods: A list of SNPs associated with SSNS was compiled from published genome wide association and candidate gene studies. The Regulatory Element Locus Intersection (RELI) tool was used to calculate the enrichment of the overlap between disease risk SNPs and the genomic coordinates of data from a collection of >10,000 chromatin immunoprecipitation sequencing experiments.

Results: After linkage disequilibrium expansion of the previously reported tag associated SNPs, we identified 192 genetic variants at 8 independent risk loci. Using the Regulatory Element Locus Intersection algorithm, we identified transcriptional regulators with enriched binding at SSNS risk loci (10 <  < 10), including ZNF530, CIITA, CD74, RFX5, and ZNF425. Many of these regulators have well-described roles in the immune response. RNA polymerase II binding in B cells also demonstrated enriched binding at SSNS risk loci (10< <10).

Conclusion: SSNS is a complex disease, and immune dysregulation has been previously implicated as a potential underlying cause. This assessment of established SSNS risk loci and analysis of possible function implicates transcriptional dysregulation, and specifically particular transcriptional regulators with known roles in the immune response, as important in the genetic etiology of SSNS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ekir.2020.09.048DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7783560PMC
January 2021

SLE non-coding genetic risk variant determines the epigenetic dysfunction of an immune cell specific enhancer that controls disease-critical microRNA expression.

Nat Commun 2021 01 8;12(1):135. Epub 2021 Jan 8.

Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China.

Since most variants that impact polygenic disease phenotypes localize to non-coding genomic regions, understanding the consequences of regulatory element variants will advance understanding of human disease mechanisms. Here, we report that the systemic lupus erythematosus (SLE) risk variant rs2431697 as likely causal for SLE through disruption of a regulatory element, modulating miR-146a expression. Using epigenomic analysis, genome-editing and 3D chromatin structure analysis, we show that rs2431697 tags a cell-type dependent distal enhancer specific for miR-146a that physically interacts with the miR-146a promoter. NF-kB binds the disease protective allele in a sequence-specific manner, increasing expression of this immunoregulatory microRNA. Finally, CRISPR activation-based modulation of this enhancer in the PBMCs of SLE patients attenuates type I interferon pathway activation by increasing miR-146a expression. Our work provides a strategy to define non-coding RNA functional regulatory elements using disease-associated variants and provides mechanistic links between autoimmune disease risk genetic variation and disease etiology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-20460-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794586PMC
January 2021

Second-hand smoke and NFE2L2 genotype interaction increases paediatric asthma risk and severity.

Clin Exp Allergy 2021 Jun 13;51(6):801-810. Epub 2021 Feb 13.

Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.

Background: Second-hand smoke (SHS) exposure is associated with paediatric asthma, and oxidative stress is believed to play a role in mediating this association. The nuclear factor (erythroid-derived 2)-like 2 (NFE2L2) is important for the defence against oxidative stress.

Objective: To explore interactions between NFE2L2 genotype and SHS exposure in paediatric asthma risk.

Methods: We used a genotyped subset of patients of European ancestry (N = 669, median age at enrolment = 6.8 years) enrolled in the clinical cohort Greater Cincinnati Pediatric Clinic Repository as the study population, and a population-based paediatric cohort (N = 791) to replicate our findings. History of asthma diagnosis was obtained from medical records, and SHS exposure was obtained from questionnaires. Four NFE2L2 tagging SNPs were included in the analysis, and interactions between SHS and NFE2L2 genotype were evaluated using logistic regression.

Results: Three of the analysed SNPs, rs10183914, rs1806649 and rs2886161, interacted significantly with SHS exposure to increase asthma risk (p ≤ .02). The interaction was replicated in an independent cohort for rs10183914 (p = .04). Interactions between SHS exposure and NFE2L2 genotype were also associated with an increased risk of hospitalization (p = .016). In stratified analyses, NFE2L2 genotype was associated with daily asthma symptoms in children with SHS exposure (OR = 3.1; p = .048). No association was found in children without SHS exposure. Examination of publicly available chromatin immunoprecipitation followed by sequencing (ChIP-seq) data sets confirmed the presence of active histone marks and binding sites for particular transcription factors overlapping the coordinates for the significantly associated SNPs.

Conclusions And Clinical Relevance: Our study provides evidence that NFE2L2 genotype interacts with SHS exposure to affect both asthma risk and severity in children and identifies a population of children at increased risk of asthma development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/cea.13815DOI Listing
June 2021

Single-nucleus RNA-seq identifies transcriptional heterogeneity in multinucleated skeletal myofibers.

Nat Commun 2020 12 11;11(1):6374. Epub 2020 Dec 11.

Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

While the majority of cells contain a single nucleus, cell types such as trophoblasts, osteoclasts, and skeletal myofibers require multinucleation. One advantage of multinucleation can be the assignment of distinct functions to different nuclei, but comprehensive interrogation of transcriptional heterogeneity within multinucleated tissues has been challenging due to the presence of a shared cytoplasm. Here, we utilized single-nucleus RNA-sequencing (snRNA-seq) to determine the extent of transcriptional diversity within multinucleated skeletal myofibers. Nuclei from mouse skeletal muscle were profiled across the lifespan, which revealed the presence of distinct myonuclear populations emerging in postnatal development as well as aging muscle. Our datasets also provided a platform for discovery of genes associated with rare specialized regions of the muscle cell, including markers of the myotendinous junction and functionally validated factors expressed at the neuromuscular junction. These findings reveal that myonuclei within syncytial muscle fibers possess distinct transcriptional profiles that regulate muscle biology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-20063-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7733460PMC
December 2020

Topoisomerase 1 inhibition therapy protects against SARS-CoV-2-induced inflammation and death in animal models.

bioRxiv 2020 Dec 1. Epub 2020 Dec 1.

The ongoing pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is currently affecting millions of lives worldwide. Large retrospective studies indicate that an elevated level of inflammatory cytokines and pro-inflammatory factors are associated with both increased disease severity and mortality. Here, using multidimensional epigenetic, transcriptional, and analyses, we report that Topoisomerase 1 (Top1) inhibition suppresses lethal inflammation induced by SARS-CoV-2. Therapeutic treatment with two doses of Topotecan (TPT), a FDA-approved Top1 inhibitor, suppresses infection-induced inflammation in hamsters. TPT treatment as late as four days post-infection reduces morbidity and rescues mortality in a transgenic mouse model. These results support the potential of Top1 inhibition as an effective host-directed therapy against severe SARS-CoV-2 infection. TPT and its derivatives are inexpensive clinical-grade inhibitors available in most countries. Clinical trials are needed to evaluate the efficacy of repurposing Top1 inhibitors for COVID-19 in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2020.12.01.404483DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7724667PMC
December 2020

Meta-analysis of 208370 East Asians identifies 113 susceptibility loci for systemic lupus erythematosus.

Ann Rheum Dis 2021 05 3;80(5):632-640. Epub 2020 Dec 3.

Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.

Objective: Systemic lupus erythematosus (SLE), an autoimmune disorder, has been associated with nearly 100 susceptibility loci. Nevertheless, these loci only partially explain SLE heritability and their putative causal variants are rarely prioritised, which make challenging to elucidate disease biology. To detect new SLE loci and causal variants, we performed the largest genome-wide meta-analysis for SLE in East Asian populations.

Methods: We newly genotyped 10 029 SLE cases and 180 167 controls and subsequently meta-analysed them jointly with 3348 SLE cases and 14 826 controls from published studies in East Asians. We further applied a Bayesian statistical approach to localise the putative causal variants for SLE associations.

Results: We identified 113 genetic regions including 46 novel loci at genome-wide significance (p<5×10). Conditional analysis detected 233 association signals within these loci, which suggest widespread allelic heterogeneity. We detected genome-wide associations at six new missense variants. Bayesian statistical fine-mapping analysis prioritised the putative causal variants to a small set of variants (95% credible set size ≤10) for 28 association signals. We identified 110 putative causal variants with posterior probabilities ≥0.1 for 57 SLE loci, among which we prioritised 10 most likely putative causal variants (posterior probability ≥0.8). Linkage disequilibrium score regression detected genetic correlations for SLE with albumin/globulin ratio (r=-0.242) and non-albumin protein (r=0.238).

Conclusion: This study reiterates the power of large-scale genome-wide meta-analysis for novel genetic discovery. These findings shed light on genetic and biological understandings of SLE.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/annrheumdis-2020-219209DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8053352PMC
May 2021

Multi-level analysis of reproduction in an Antarctic midge identifies female and male accessory gland products that are altered by larval stress and impact progeny viability.

Sci Rep 2020 11 13;10(1):19791. Epub 2020 Nov 13.

Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.

The Antarctic midge, Belgica antarctica, is a wingless, non-biting midge endemic to Antarctica. Larval development requires at least 2 years, but adults live only 2 weeks. The nonfeeding adults mate in swarms and females die shortly after oviposition. Eggs are suspended in a gel of unknown composition that is expressed from the female accessory gland. This project characterizes molecular mechanisms underlying reproduction in this midge by examining differential gene expression in whole males, females, and larvae, as well as in male and female accessory glands. Functional studies were used to assess the role of the gel encasing the eggs, as well as the impact of stress on reproductive biology. RNA-seq analyses revealed sex- and development-specific gene sets along with those associated with the accessory glands. Proteomic analyses were used to define the composition of the egg-containing gel, which is generated during multiple developmental stages and derived from both the accessory gland and other female organs. Functional studies indicate the gel provides a larval food source as well as a buffer for thermal and dehydration stress. All of these function are critical to juvenile survival. Larval dehydration stress directly reduces production of storage proteins and key accessory gland components, a feature that impacts adult reproductive success. Modeling reveals that bouts of dehydration may have a significant impact on population growth. This work lays a foundation for further examination of reproduction in midges and provides new information related to general reproduction in dipterans. A key aspect of this work is that reproduction and stress dynamics, currently understudied in polar organisms, are likely to prove critical in determining how climate change will alter their survivability.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-76139-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7666147PMC
November 2020

Nasal DNA methylation differentiates severe from non-severe asthma in African-American children.

Allergy 2021 06 25;76(6):1836-1845. Epub 2020 Nov 25.

California National Primate Research Center, Davis, CA, USA.

Background: Asthma is highly heterogeneous, and severity evaluation is key to asthma management. DNA methylation (DNAm) contributes to asthma pathogenesis. This study aimed to identify nasal epithelial DNAm differences between severe and nonsevere asthmatic children and evaluate the impact of environmental exposures.

Methods: Thirty-three nonsevere and 22 severe asthmatic African American children were included in an epigenome-wide association study. Genome-wide nasal epithelial DNAm and gene expression were measured. CpG sites associated with asthma severity and environmental exposures and predictive of severe asthma were identified. DNAm was correlated with gene expression. Enrichment for transcription factor (TF) binding sites or histone modifications surrounding DNAm differences were determined.

Results: We identified 816 differentially methylated CpG positions (DMPs) and 10 differentially methylated regions (DMRs) associated with asthma severity. Three DMPs exhibited discriminatory ability for severe asthma. Intriguingly, six DMPs were simultaneously associated with asthma, allergic asthma, total IgE, environmental IgE, and FeNO in an independent cohort of children. Twenty-seven DMPs were associated with traffic-related air pollution or secondhand smoke. DNAm at 22 DMPs was altered by diesel particles or allergen in human bronchial epithelial cells. DNAm levels at 39 DMPs were correlated with mRNA expression. Proximal to 816 DMPs, three histone marks and several TFs involved in asthma pathogenesis were enriched.

Conclusions: Significant differences in nasal epithelial DNAm were observed between nonsevere and severe asthma in African American children, a subset of which may be useful to predict disease severity. These CpG sites are subjected to the influences of environmental exposures and may regulate gene expression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/all.14655DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8110596PMC
June 2021

Genome-enabled insights into the biology of thrips as crop pests.

BMC Biol 2020 10 19;18(1):142. Epub 2020 Oct 19.

Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia.

Background: The western flower thrips, Frankliniella occidentalis (Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the processes governing thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance are largely unknown. To address this gap, we present the F. occidentalis draft genome assembly and official gene set.

Results: We report on the first genome sequence for any member of the insect order Thysanoptera. Benchmarking Universal Single-Copy Ortholog (BUSCO) assessments of the genome assembly (size = 415.8 Mb, scaffold N50 = 948.9 kb) revealed a relatively complete and well-annotated assembly in comparison to other insect genomes. The genome is unusually GC-rich (50%) compared to other insect genomes to date. The official gene set (OGS v1.0) contains 16,859 genes, of which ~ 10% were manually verified and corrected by our consortium. We focused on manual annotation, phylogenetic, and expression evidence analyses for gene sets centered on primary themes in the life histories and activities of plant-colonizing insects. Highlights include the following: (1) divergent clades and large expansions in genes associated with environmental sensing (chemosensory receptors) and detoxification (CYP4, CYP6, and CCE enzymes) of substances encountered in agricultural environments; (2) a comprehensive set of salivary gland genes supported by enriched expression; (3) apparent absence of members of the IMD innate immune defense pathway; and (4) developmental- and sex-specific expression analyses of genes associated with progression from larvae to adulthood through neometaboly, a distinct form of maturation differing from either incomplete or complete metamorphosis in the Insecta.

Conclusions: Analysis of the F. occidentalis genome offers insights into the polyphagous behavior of this insect pest that finds, colonizes, and survives on a widely diverse array of plants. The genomic resources presented here enable a more complete analysis of insect evolution and biology, providing a missing taxon for contemporary insect genomics-based analyses. Our study also offers a genomic benchmark for molecular and evolutionary investigations of other Thysanoptera species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12915-020-00862-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570057PMC
October 2020

Gli3 utilizes Hand2 to synergistically regulate tissue-specific transcriptional networks.

Elife 2020 10 2;9. Epub 2020 Oct 2.

Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.

Despite a common understanding that Gli TFs are utilized to convey a Hh morphogen gradient, genetic analyses suggest craniofacial development does not completely fit this paradigm. Using the mouse model (), we demonstrated that rather than being driven by a Hh threshold, robust Gli3 transcriptional activity during skeletal and glossal development required interaction with the basic helix-loop-helix TF Hand2. Not only did genetic and expression data support a co-factorial relationship, but genomic analysis revealed that Gli3 and Hand2 were enriched at regulatory elements for genes essential for mandibular patterning and development. Interestingly, motif analysis at sites co-occupied by Gli3 and Hand2 uncovered mandibular-specific, low-affinity, 'divergent' Gli-binding motifs (GBMs). Functional validation revealed these GBMs conveyed synergistic activation of Gli targets essential for mandibular patterning and development. In summary, this work elucidates a novel, sequence-dependent mechanism for Gli transcriptional activity within the craniofacial complex that is independent of a graded Hh signal.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7554/eLife.56450DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7556880PMC
October 2020
-->