Publications by authors named "Matthew I Milstein"

5 Publications

  • Page 1 of 1

Phase II Clinical Trial of Everolimus in a Pan-Cancer Cohort of Patients with mTOR Pathway Alterations.

Clin Cancer Res 2021 Mar 16. Epub 2021 Mar 16.

Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.

Purpose: This was a multicenter, histology-agnostic, single-arm prospective phase II trial of therapeutic activity of everolimus, an oral mTORC1 inhibitor, in patients with advanced solid tumors that harbored / or mutations.

Experimental Design: Patients with tumors with inactivating / or activating mutations identified in any Clinical Laboratory Improvement Amendments (CLIA)-certified laboratory were eligible. Patients were treated with everolimus 10 mg once daily until disease progression or unacceptable toxicity. The primary endpoint was objective response rate (ORR). Whole-exome sequencing was performed to identify co-occurring genomic alterations.

Results: Between November 2015 and October 2018, 30 patients were enrolled at Dana-Farber Cancer Institute and Memorial Sloan Kettering Cancer Center. Tumors harbored (13/30), (15/30), concurrent and (1/30), or (1/30) mutations. The most common treatment-related adverse event of any grade was mucositis (8/30, 27%); 1 patient had fatal pneumonitis. Partial responses were seen in 2 patients [7%; 95% confidence interval (CI), 1%-22%]. Median progression-free survival was 2.3 months (95% CI, 1.8-3.7 months) and median overall survival (OS) was 7.3 months (95% CI, 4.5-12.7 months). There was no clear association between other genomic alterations and response. Of the 2 patients with objective response, 1 had upper tract urothelial carcinoma with biallelic inactivation of and high tumor mutation burden, and the other had uterine carcinoma with biallelic -inactivating mutations and PEComa-like pathologic features.

Conclusions: Everolimus therapy had a disappointing ORR (7%) in this pan-cancer, mutation-selected, basket study.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
March 2021

Ex vivo expansion of human CD8+ T cells using autologous CD4+ T cell help.

PLoS One 2012 12;7(1):e30229. Epub 2012 Jan 12.

Department of Medical Oncology, Dana-Farber Cancer Institute, Massachusetts, United States of America.

Background: Using in vivo mouse models, the mechanisms of CD4+ T cell help have been intensively investigated. However, a mechanistic analysis of human CD4+ T cell help is largely lacking. Our goal was to elucidate the mechanisms of human CD4+ T cell help of CD8+ T cell proliferation using a novel in vitro model.

Methods/principal Findings: We developed a genetically engineered novel human cell-based artificial APC, aAPC/mOKT3, which expresses a membranous form of the anti-CD3 monoclonal antibody OKT3 as well as other immune accessory molecules. Without requiring the addition of allogeneic feeder cells, aAPC/mOKT3 enabled the expansion of both peripheral and tumor-infiltrating T cells, regardless of HLA-restriction. Stimulation with aAPC/mOKT3 did not expand Foxp3+ regulatory T cells, and expanded tumor infiltrating lymphocytes predominantly secreted Th1-type cytokines, interferon-γ and IL-2. In this aAPC-based system, the presence of autologous CD4+ T cells was associated with significantly improved CD8+ T cell expansion in vitro. The CD4+ T cell derived cytokines IL-2 and IL-21 were necessary but not sufficient for this effect. However, CD4+ T cell help of CD8+ T cell proliferation was partially recapitulated by both adding IL-2/IL-21 and by upregulation of IL-21 receptor on CD8+ T cells.

Conclusions: We have developed an in vitro model that advances our understanding of the immunobiology of human CD4+ T cell help of CD8+ T cells. Our data suggests that human CD4+ T cell help can be leveraged to expand CD8+ T cells in vitro.
View Article and Find Full Text PDF

Download full-text PDF

July 2012

IL-21 can supplement suboptimal Lck-independent MAPK activation in a STAT-3-dependent manner in human CD8(+) T cells.

J Immunol 2012 Feb 11;188(4):1609-19. Epub 2012 Jan 11.

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.

Although both MHC class II/CD8α double-knockout and CD8β null mice show a defect in the development of MHC class I-restricted CD8(+) T cells in the thymus, they possess low numbers of high-avidity peripheral CTL with limited clonality and are able to contain acute and chronic infections. These in vivo data suggest that the CD8 coreceptor is not absolutely necessary for the generation of Ag-specific CTL. Lack of CD8 association causes partial TCR signaling because of the absence of CD8/Lck recruitment to the proximity of the MHC/TCR complex, resulting in suboptimal MAPK activation. Therefore, there should exist a signaling mechanism that can supplement partial TCR activation caused by the lack of CD8 association. In this human study, we have shown that CD8-independent stimulation of Ag-specific CTL previously primed in the presence of CD8 coligation, either in vivo or in vitro, induced severely impaired in vitro proliferation. When naive CD8(+) T cells were primed in the absence of CD8 binding and subsequently restimulated in the presence of CD8 coligation, the proliferation of Ag-specific CTL was also severely hampered. However, when CD8-independent T cell priming and restimulation were supplemented with IL-21, Ag-specific CD8(+) CTL expanded in two of six individuals tested. We found that IL-21 rescued partial MAPK activation in a STAT3- but not STAT1-dependent manner. These results suggest that CD8 coligation is critical for the expansion of postthymic peripheral Ag-specific CTL in humans. However, STAT3-mediated IL-21 signaling can supplement partial TCR signaling caused by the lack of CD8 association.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
February 2012

Establishment of antitumor memory in humans using in vitro-educated CD8+ T cells.

Sci Transl Med 2011 Apr;3(80):80ra34

Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.

Although advanced-stage melanoma patients have a median survival of less than a year, adoptive T cell therapy can induce durable clinical responses in some patients. Successful adoptive T cell therapy to treat cancer requires engraftment of antitumor T lymphocytes that not only retain specificity and function in vivo but also display an intrinsic capacity to survive. To date, adoptively transferred antitumor CD8(+) T lymphocytes (CTLs) have had limited life spans unless the host has been manipulated. To generate CTLs that have an intrinsic capacity to persist in vivo, we developed a human artificial antigen-presenting cell system that can educate antitumor CTLs to acquire both a central memory and an effector memory phenotype as well as the capacity to survive in culture for prolonged periods of time. We examined whether antitumor CTLs generated using this system could function and persist in patients. We showed that MART1-specific CTLs, educated and expanded using our artificial antigen-presenting cell system, could survive for prolonged periods in advanced-stage melanoma patients without previous conditioning or cytokine treatment. Moreover, these CTLs trafficked to the tumor, mediated biological and clinical responses, and established antitumor immunologic memory. Therefore, this approach may broaden the availability of adoptive cell therapy to patients both alone and in combination with other therapeutic modalities.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
April 2011

A panel of human cell-based artificial APC enables the expansion of long-lived antigen-specific CD4+ T cells restricted by prevalent HLA-DR alleles.

Int Immunol 2010 Nov 8;22(11):863-73. Epub 2010 Nov 8.

Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA.

Many preclinical experiments have attested to the critical role of CD4(+) T cell help in CD8(+) cytotoxic T lymphocyte (CTL)-mediated immunity. Recent clinical trials have demonstrated that reinfusion of CD4(+) T cells can induce responses in infectious diseases and cancer. However, few standardized and versatile systems exist to expand antigen-specific CD4(+) T(h) for clinical use. K562 is a human erythroleukemic cell line, which lacks expression of HLA class I and class II, invariant chain and HLA-DM but expresses adhesion molecules such as intercellular adhesion molecule-1 and leukocyte function-associated antigen-3. With this unique immunologic phenotype, K562 has been tested in clinical trials of cancer immunotherapy. Previously, we created a K562-based artificial antigen-presenting cell (aAPC) that generates ex vivo long-lived HLA-A2-restricted CD8(+) CTL with a central/effector memory phenotype armed with potent effector function. We successfully generated a clinical version of this aAPC and conducted a clinical trial where large numbers of anti-tumor CTL are reinfused to cancer patients. In this article, we shifted focus to CD4(+) T cells and developed a panel of novel K562-derived aAPC, where each expresses a different single HLA-DR allele, invariant chain, HLA-DM, CD80, CD83 and CD64; takes up soluble protein by endocytosis and processes and presents CD4(+) T-cell peptides. Using this aAPC, we were able to determine novel DR-restricted CD4(+) T-cell epitopes and expand long-lived CD4(+) T-cells specific for multiple antigens without growing bystander Foxp3(+) regulatory T cells. Our results suggest that K562-based aAPC may serve as a translatable platform to generate both antigen-specific CD8(+) CTL and CD4(+) T(h).
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
November 2010