Publications by authors named "Mats Larsbo"

16 Publications

  • Page 1 of 1

A framework for modelling soil structure dynamics induced by biological activity.

Glob Chang Biol 2020 Oct 23;26(10):5382-5403. Epub 2020 Aug 23.

Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden.

Soil degradation is a worsening global phenomenon driven by socio-economic pressures, poor land management practices and climate change. A deterioration of soil structure at timescales ranging from seconds to centuries is implicated in most forms of soil degradation including the depletion of nutrients and organic matter, erosion and compaction. New soil-crop models that could account for soil structure dynamics at decadal to centennial timescales would provide insights into the relative importance of the various underlying physical (e.g. tillage, traffic compaction, swell/shrink and freeze/thaw) and biological (e.g. plant root growth, soil microbial and faunal activity) mechanisms, their impacts on soil hydrological processes and plant growth, as well as the relevant timescales of soil degradation and recovery. However, the development of such a model remains a challenge due to the enormous complexity of the interactions in the soil-plant system. In this paper, we focus on the impacts of biological processes on soil structure dynamics, especially the growth of plant roots and the activity of soil fauna and microorganisms. We first define what we mean by soil structure and then review current understanding of how these biological agents impact soil structure. We then develop a new framework for modelling soil structure dynamics, which is designed to be compatible with soil-crop models that operate at the soil profile scale and for long temporal scales (i.e. decades, centuries). We illustrate the modelling concept with a case study on the role of root growth and earthworm bioturbation in restoring the structure of a severely compacted soil.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.15289DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7539949PMC
October 2020

Evaluating the ability of standardised leaching tests to predict metal(loid) leaching from intact soil columns using size-based elemental fractionation.

Chemosphere 2019 May 28;222:453-460. Epub 2019 Jan 28.

Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, SE-750 07 Uppsala, Sweden; Swedish Geotechnical Institute, Kornhamnstorg 61, SE-111 27 Stockholm, Sweden. Electronic address:

Laboratory-based leaching tests are frequently used for in situ risk assessments of contaminant leaching to groundwater and surface waters. This study evaluated the ability of three standardised leaching tests to assess leaching of lead (Pb), zinc (Zn), arsenic (As) and antimony (Sb) from four intact soil profiles, by considering particulate (0.45-8 μm; percolation test), colloidal (10 kDa-0.45 μm) and truly dissolved (<10 kDa) fractions of these elements. Deionised water was used as the percolation test leachant, while either deionised water or 1 mM CaCl was used in batch tests. Data from an irrigation experiment were used as reference. The results indicated that in percolation tests, leachate should be collected at a liquid:solid ratio (L/S) range of 2-10, instead of 0-0.5 or 0.5-2. Even at L/S = 2-10, the percolation test overestimated total Pb concentration, mainly because of greater mobilisation of particle-bound Pb, but appeared suitable for categorising soils into high/low risk with respect to mobilisation of particulate and colloidal contaminants. The batch test performed better with CaCl than with deionised water when standard membrane filtration (0.45 μm) was used, as the high Ca concentration reduced colloidal mobilisation, avoiding overestimation of concentrations of elements such as Pb. However, the higher Ca concentration and lower pH could result in overestimated concentrations of weakly sorbed elements, e.g. Zn.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2019.01.148DOI Listing
May 2019

The effect of freezing and thawing on water flow and MCPA leaching in partially frozen soil.

J Contam Hydrol 2018 12 13;219:72-85. Epub 2018 Nov 13.

Norwegian Institute of Bioeconomy Research (NIBIO), Division of Biotechnology and Plant Health, Department of Pesticides and Natural Products Chemistry, P.O. Box 115, NO-1431 Ås, Norway; Norwegian University of Life Sciences, Faculty of Bio Sciences, Department of Plant Sciences, P.O. Box 5003, N-1432 Ås, Norway. Electronic address:

Limited knowledge and experimental data exist on pesticide leaching through partially frozen soil. The objective of this study was to better understand the complex processes of freezing and thawing and the effects these processes have on water flow and pesticide transport through soil. To achieve this we conducted a soil column irrigation experiment to quantify the transport of a non-reactive tracer and the herbicide MCPA in partially frozen soil. In total 40 intact topsoil and subsoil columns from two agricultural fields with contrasting soil types (silt and loam) in South-East Norway were used in this experiment. MCPA and bromide were applied on top of all columns. Half the columns were then frozen at -3 °C while the other half of the columns were stored at +4 °C. Columns were then subjected to repeated irrigation events at a rate of 5 mm artificial rainwater for 5 h at each event. Each irrigation was followed by 14-day periods of freezing or refrigeration. Percolate was collected and analysed for MCPA and bromide. The results show that nearly 100% more MCPA leached from frozen than unfrozen topsoil columns of Hov silt and Kroer loam soils. Leaching patterns of bromide and MCPA were very similar in frozen columns with high concentrations and clear peaks early in the irrigation process, and with lower concentrations leaching at later stages. Hardly any MCPA leached from unfrozen topsoil columns (0.4-0.5% of applied amount) and concentrations were very low. Bromide showed a different flow pattern indicating a more uniform advective-dispersive transport process in the unfrozen columns with higher concentrations leaching but without clear concentration peaks. This study documents that pesticides can be preferentially transported through soil macropores at relatively high concentrations in partially frozen soil. These findings indicate, that monitoring programs should include sampling during snow melt or early spring in areas were soil frost is common as this period could imply exposure peaks in groundwater or surface water.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconhyd.2018.11.003DOI Listing
December 2018

Assessing strategies to mitigate phosphorus leaching from drained clay soils.

Ambio 2018 Jan;47(Suppl 1):114-123

Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 75007, Uppsala, Sweden.

Assessing mitigation of phosphorus (P) leaching from subsurface drainage systems is challenging due to high spatial and temporal variation in leaching. Mean measured total P leaching from a clayey soil in an eight-year study period (four replicates per treatment) was (kg ha year): 1.21 from shallow autumn tillage (ShT), 0.84 from unfertilised fallow (UF), 0.81 from conventional autumn ploughing (CT) and 0.57 from structure liming (SL-CT). Treatment was not significant using Richards-Baker flow index or a distance factor as covariate (p = 0.084 and 0.057). A tendency for lower leaching was obtained comparing SL-CT with ShT (p  = 0.060 and 0.009 respectively). A combination of measures adapted to drainage conditions and clay content in different parts of the field is proposed since P leaching was approximately halved from an adjacent field (4.3 ha) in a three-year post-period compared with a three-year pre-period for structure liming the entire field and drainage system renovation plus structure lime drain backfilling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13280-017-0991-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5722749PMC
January 2018

Solubility and transport of Cr(III) in a historically contaminated soil - Evidence of a rapidly reacting dimeric Cr(III) organic matter complex.

Chemosphere 2017 Dec 20;189:709-716. Epub 2017 Sep 20.

Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, SE-750 07, Uppsala, Sweden; Swedish Geotechnical Institute, Kornhamnstorg 61, SE-111 27, Stockholm, Sweden.

Chromium is a common soil contaminant and, although it has been studied widely, questions about its speciation and dissolutions kinetics remain unanswered. We combined information from an irrigation experiment performed with intact soil columns with data from batch experiments to evaluate solubility and mobilization mechanisms of Cr(III) in a historically contaminated soil (>65 years). Particulate and colloidal Cr(III) forms dominated transport in this soil, but their concentrations were independent of irrigation intensity (2-20 mm h). Extended X-ray absorption fine structure (EXAFS) measurements indicated that Cr(III) associated with colloids and particles, and with the solid phase, mainly existed as dimeric hydrolyzed Cr(III) bound to natural organic matter. Dissolution kinetics of this species were fast (≤1 day) at low pH (<3) and slightly slower (≤5 days) at neutral pH. Furthermore, it proved possible to describe the solubility of the dimeric Cr(III) organic matter complex with a geochemical equilibrium model using only generic binding parameters, opening the way for use of geochemical models in risk assessments of Cr(III)-contaminated sites.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2017.09.088DOI Listing
December 2017

Spatial and temporal patterns of pesticide concentrations in streamflow, drainage and runoff in a small Swedish agricultural catchment.

Sci Total Environ 2018 Jan 17;610-611:623-634. Epub 2017 Aug 17.

Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, SE-750 07 Uppsala, Sweden.

A better understanding of the dominant source areas and transport pathways of pesticide losses to surface water is needed for targeting mitigation efforts in a more cost-effective way. To this end, we monitored pesticides in surface water in an agricultural catchment typical of one of the main crop production regions in Sweden. Three small sub-catchments (88-242ha) were selected for water sampling based on a high-resolution digital soil map developed from proximal sensing methods and soil sampling; one sub-catchment had a high proportion of clay soils, another was dominated by coarse sandy soils while the third comprised a mix of soil types. Samples were collected from the stream, from field drains discharging into the stream and from within-field surface runoff during spring and early summer in three consecutive years. These samples were analyzed by LC-MS/MS for 99 compounds, including most of the polar and semi-polar pesticides frequently used in Swedish agriculture. Information on pesticide applications (products, doses and timing) was obtained from annual interviews with the farmers. There were clear and consistent differences in pesticide occurrence in the stream between the three sub-catchments, with both the numbers of detected compounds and concentrations being the largest in the area with a high proportion of clay soils and with very few detections in the sandy sub-catchment. Macropore flow to drains was most likely the dominant loss pathway in the studied area. Many of the compounds that were detected in drainage and stream water samples had not been applied for several years. This suggests that despite the predominant role of fast flow pathways in determining losses to the stream, long-term storage along the transport pathways also occurs, presumably in subsoil horizons where degradation is slow.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2017.08.068DOI Listing
January 2018

Surface Runoff of Pesticides from a Clay Loam Field in Sweden.

J Environ Qual 2016 Jul;45(4):1367-74

Pesticides stored at or close to the soil surface after field application can be mobilized and transported off the field when surface runoff occurs. The objective of our study was to quantify the potential pesticide losses in surface runoff from a conventionally managed agricultural field in a Swedish climate. This was achieved by measuring surface runoff volumes and concentrations in runoff of six spring-applied pesticides and autumn-applied glyphosate and its metabolite aminomethylphosphonic acid (AMPA). Measurements were performed for 3 yr both during the growing seasons and during intervening winter snowmelt periods on a clay loam field close to Uppsala. During growing seasons, surface runoff was generated on only five occasions during one 25-d period in 2012 when the infiltration capacity of the soil may have been reduced by structural degradation due to large cumulative rainfall amounts after harrowing. Concentrations in surface runoff exceeded Swedish water quality standards in all samples during this growing season for diflufenican and pirimicarb. Surface runoff was generated during three snowmelt periods during the winter of 2012-2013. All of the applied pesticides were found in snowmelt samples despite incorporation of residues by autumn plowing, degradation, and leaching into the soil profile during the period between spraying and sampling. Concentrations of glyphosate ranged from 0.12 to 7.4 μg L, and concentrations of AMPA ranged from 0 to 2.7 μg L. Our results indicate that temporal changes in hydraulic properties during the growing season and when the soil freezes during winter affect pesticide losses through surface runoff.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2015.10.0528DOI Listing
July 2016

Sequential use of the STICS crop model and of the MACRO pesticide fate model to simulate pesticides leaching in cropping systems.

Environ Sci Pollut Res Int 2017 Mar 18;24(8):6895-6909. Epub 2016 May 18.

UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France.

The current challenge in sustainable agriculture is to introduce new cropping systems to reduce pesticides use in order to reduce ground and surface water contamination. However, it is difficult to carry out in situ experiments to assess the environmental impacts of pesticide use for all possible combinations of climate, crop, and soils; therefore, in silico tools are necessary. The objective of this work was to assess pesticides leaching in cropping systems coupling the performances of a crop model (STICS) and of a pesticide fate model (MACRO). STICS-MACRO has the advantage of being able to simulate pesticides fate in complex cropping systems and to consider some agricultural practices such as fertilization, mulch, or crop residues management, which cannot be accounted for with MACRO. The performance of STICS-MACRO was tested, without calibration, from measurements done in two French experimental sites with contrasted soil and climate properties. The prediction of water percolation and pesticides concentrations with STICS-MACRO was satisfactory, but it varied with the pedoclimatic context. The performance of STICS-MACRO was shown to be similar or better than that of MACRO. The improvement of the simulation of crop growth allowed better estimate of crop transpiration therefore of water balance. It also allowed better estimate of pesticide interception by the crop which was found to be crucial for the prediction of pesticides concentrations in water. STICS-MACRO is a new promising tool to improve the assessment of the environmental risks of pesticides used in cropping systems.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-016-6842-7DOI Listing
March 2017

Applicability of models to predict phosphorus losses in drained fields: a review.

J Environ Qual 2015 Mar;44(2):614-28

Most phosphorus (P) modeling studies of water quality have focused on surface runoff loses. However, a growing number of experimental studies have shown that P losses can occur in drainage water from artificially drained fields. In this review, we assess the applicability of nine models to predict this type of P loss. A model of P movement in artificially drained systems will likely need to account for the partitioning of water and P into runoff, macropore flow, and matrix flow. Within the soil profile, sorption and desorption of dissolved P and filtering of particulate P will be important. Eight models are reviewed (ADAPT, APEX, DRAINMOD, HSPF, HYDRUS, ICECREAMDB, PLEASE, and SWAT) along with P Indexes. Few of the models are designed to address P loss in drainage waters. Although the SWAT model has been used extensively for modeling P loss in runoff and includes tile drain flow, P losses are not simulated in tile drain flow. ADAPT, HSPF, and most P Indexes do not simulate flow to tiles or drains. DRAINMOD simulates drains but does not simulate P. The ICECREAMDB model from Sweden is an exception in that it is designed specifically for P losses in drainage water. This model seems to be a promising, parsimonious approach in simulating critical processes, but it needs to be tested. Field experiments using a nested, paired research design are needed to improve P models for artificially drained fields. Regardless of the model used, it is imperative that uncertainty in model predictions be assessed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2014.05.0220DOI Listing
March 2015

Spatial variation in herbicide leaching from a marine clay soil via subsurface drains.

Pest Manag Sci 2014 Mar 13;70(3):405-14. Epub 2013 Jun 13.

Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden.

Background: Subsurface transport via tile drains can significantly contribute to pesticide contamination of surface waters. The spatial variation in subsurface leaching of normally applied herbicides was examined together with phosphorus losses in 24 experimental plots with water sampled flow-proportionally. The study site was a flat, tile-drained area with 60% marine clay in the topsoil in southeast Sweden. The objectives were to quantify the leaching of frequently used herbicides from a tile drained cracking clay soil and to evaluate the variation in leaching within the experimental area and relate this to topsoil management practices (tillage method and structure liming).

Results: In summer 2009, 0.14, 0.22 and 1.62%, respectively, of simultaneously applied amounts of MCPA, fluroxypyr and clopyralid were leached by heavy rain five days after spraying. In summer 2011, on average 0.70% of applied bentazone was leached by short bursts of intensive rain 12 days after application. Peak flow concentrations for 50% of the treated area for MCPA and 33% for bentazone exceeded the Swedish no-effect guideline values for aquatic ecosystems. Approximately 0.08% of the glyphosate applied was leached in dissolved form in the winters of 2008/2009 and 2010/2011. Based on measurements of glyphosate in particulate form, total glyphosate losses were twice as high (0.16%) in the second winter. The spatial inter-plot variation was large (72-115%) for all five herbicides studied, despite small variations (25%) in water discharge.

Conclusions: The study shows the importance of local scale soil transport properties for herbicide leaching in cracking clay soils.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.3574DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4238832PMC
March 2014

Pesticide leaching from two Swedish topsoils of contrasting texture amended with biochar.

J Contam Hydrol 2013 Apr 8;147:73-81. Epub 2013 Feb 8.

Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7014, 75007 Uppsala, Sweden.

The use of biochar as a soil amendment has recently increased because of its potential for long-term soil carbon sequestration and its potential for improving soil fertility. The objective of this study was to quantify the effects of biochar soil incorporation on pesticide adsorption and leaching for two Swedish topsoils, one clay soil and one loam soil. We used the non-reactive tracer bromide and the pesticides sulfosulfuron, isoproturon, imidacloprid, propyzamid and pyraclostrobin, substances with different mobility in soil. Adsorption was studied in batch experiments and leaching was studied in experiments using soil columns (20 cm high, 20 cm diameter) where 0.01 kg kg(-1) dw biochar powder originating from wheat residues had been mixed into the top 10 cm. After solute application the columns were exposed to simulated rain three times with a weekly interval and concentrations were measured in the effluent water. The biochar treatment resulted in significantly larger adsorption distribution coefficients (Kd) for the moderately mobile pesticides isoproturon and imidacloprid for the clay soil and for imidacloprid only for the loam soil. Relative leaching of the pesticides ranged from 0.0035% of the applied mass for pyraclostrobin (average Kd=360 cm3 g(-1)) to 5.9% for sulfosulfuron (average Kd=5.6 cm3 g(-1)). There were no significant effects of the biochar amendment on pesticide concentrations in column effluents for the loam soil. For the clay soil concentrations were significantly reduced for isoproturon, imidacloprid and propyzamid while they were significantly increased for the non-mobile fungicide pyraclostrobin suggesting that the transport was facilitated by material originating from the biochar amendment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconhyd.2013.01.003DOI Listing
April 2013

Simulation of pharmaceutical and personal care product transport to tile drains after biosolids application.

J Environ Qual 2009 May-Jun;38(3):1274-85. Epub 2009 Apr 27.

Dep. of Soil and Environment, Swedish Univ. of Agricultural Sciences (SLU), 750 07 Uppsala, Sweden.

Pharmaceuticals and personal care products (PPCPs) carried in biosolids may reach surface waters or ground water when these materials are applied as fertilizer to agricultural land. During preferential flow conditions created by land application of liquid municipal biosolids (LMB), the residence time of solutes in the macropores may be too short for sorption equilibration. The physically based dual-permeability model MACRO is used in environmental risk assessments for pesticides and may have potential as an environmental risk assessment tool for PPCPs. The objective of this study was to evaluate MACRO and an updated version of MACRO that included non-equilibrium sorption in macropores using data from experiments conducted in eastern Ontario, Canada on the transport of three PPCPs (atenolol, carbamazepine, and triclosan), the nicotine metabolite cotinine, and the strongly sorbing dye rhodamine WT applied in LMB. Results showed that the MACRO model could not reproduce the measured rhodamine WT concentrations (Nash-Sutcliffe coefficient [NS] for the best simulation = -0.057) in drain discharge. The updated version resulted in better fits to measured data for PPCP (average NS = 0.97) and rhodamine WT (NS = 0.84) concentrations. However, it was not possible to simulate all compounds using the same set of hydraulic parameters, which indicates that the model does not fully account for all relevant processes. The results presented herein show that non-equilibrium sorption in macropores has a large impact on simulated solute transport for reactive compounds contained in LMB. This process should be considered in solute transport models that are used for environmental risk assessments for such compounds.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2008.0301DOI Listing
June 2009

Fungicide leaching from golf greens: effects of root zone composition and surfactant use.

J Environ Qual 2008 Jul-Aug;37(4):1527-35. Epub 2008 Jun 23.

Dep. of Soil Sciences, Swedish Univ. of Agricultural Sciences (SLU), PO Box 7014, 750 07 Uppsala, Sweden.

Soil water repellency in golf putting greens may induce preferential "finger flow," leading to enhanced leaching of surface applied fungicides. We examined the effects of root zone composition, treatment with a non-ionic surfactant, and the use of the fungicide iprodion or a combination of azoxystrobin and propiconazole on soil water repellency, soil water content distributions, fungicide leaching, and turf quality during 1 yr. Soil water repellency was measured using the water drop penetration time (WDPT) test and tension infiltrometers. Our study was made on a 3-yr-old experimental green seeded with creeping bentgrass (Agrostis stolonifera L.) 'Penn A-4' at Landvik in southeast Norway. The facility consists of 16 lysimeters with two different root zone materials: (i) straight sand (1% gravel, 96% sand, 3% silt and clay, 4 g kg(-1) organic matter) (SS) and (ii) straight sand mixed with garden compost to an organic matter content of 21 g kg(-1) (Green Mix [GM]). Surfactant treatment resulted in 96% lower average WDPTs at 1 cm depth, three times higher water infiltration rates at the soil surface, and reduced spatial variation in soil water contents. Fungicide leaching was close to zero for the GM lysimeters probably due to stronger sorption. Concentrations in the drainage water from SS lysimeters often exceeded surface water guideline values for all three fungicides, but surfactant treatment dramatically reduced fungicide leaching from these lysimeters. In autumn and winter, surfactant-treated plots were more infected with fungal diseases probably because of higher water content in the turfgrass thatch layer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2007.0440DOI Listing
August 2008

Simulating sulfadimidine transport in surface runoff and soil at the microplot and field scale.

J Environ Qual 2008 May-Jun;37(3):788-97. Epub 2008 May 2.

Swiss Federal Inst. for Aquatic Science and Technology (Eawag), Ueberlandstrasse 133, Duebendorf, Switzerland.

To prevent residues of veterinary medicinal products (VMPs) from contaminating surface waters and ground water, an environmental impact assessment is required before a new product is allowed on the market. Physically based simulation models are advocated for the calculation of predicted environmental concentrations at higher tiers of the assessment process. However, the validation status of potentially useful models is poor for VMP transport. The objective of this study was to evaluate the dual-permeability model MACRO for simulation of transport of sulfonamide antibiotics in surface runoff and soil. Special focus was on effects of solute application in liquid manure, which may alter the hydraulic properties at the soil surface. To this end we used data from a microplot runoff experiment and a field experiment, both conducted on the same clay loam soil prone to preferential flow. Results showed that the model could accurately simulate concentrations of sulfadimidine and the nonreactive tracer bromide in runoff and in soil from the microplot experiments. The use of posterior parameter distributions from calibrations using the microplot data resulted in poor simulations for the field data of total sulfadimidine losses. The poor results may be due to surface runoff being instantly transferred off the field in the model, whereas in reality re-infiltration may occur. The effects of the manure application were reflected in smaller total and micropore hydraulic conductivities compared with the application in aqueous solution. These effects could easily be accounted for in regulatory modeling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2007.0432DOI Listing
September 2008

Simulating solute transport in a structured field soil: uncertainty in parameter identification and predictions.

J Environ Qual 2005 Mar-Apr;34(2):621-34

Department of Soil Sciences, SLU, Box 7014, 750 07 Uppsala, Sweden.

Dual-permeability models have been developed to account for the significant effects of macropore flow on contaminant transport, but their use is hampered by difficulties in estimating the additional parameters required. Therefore, our objective was to evaluate data requirements for parameter identification for predictive modeling with the dual-permeability model MACRO. Two different approaches were compared: sequential uncertainty fitting (SUFI) and generalized likelihood uncertainty estimation (GLUE). We investigated six parameters controlling macropore flow and pesticide sorption and degradation, applying MACRO to a comprehensive field data set of bromide andbentazone [3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one-2,2dioxide] transport in a structured soil. The GLUE analyses of parameter conditioning for different combinations of observations showed that both resident and flux concentrations were needed to obtain highly conditioned and unbiased parameters and that observations of tracer transport generally improved the conditioning of macropore flow parameters. The GLUE "behavioral" parameter sets covered wider parameter ranges than the SUFI posterior uncertainty domains. Nevertheless, estimation uncertainty ranges defined by the 5th and 95th percentiles were similar and many simulations randomly sampled from the SUFI posterior uncertainty domains had negative model efficiencies (minimum of -3.2). This is because parameter correlations are neglected in SUFI and the posterior uncertainty domains were not always determined correctly. For the same reasons, uncertainty ranges for predictions of bentazone losses through drainflow for good agricultural practice in southern Sweden were 27% larger for SUFI compared with GLUE. Although SUFI proved to be an efficient parameter estimation tool, GLUE seems better suited as a method of uncertainty estimation for predictions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2005.0621DOI Listing
July 2005
-->