Publications by authors named "Mathieu Le Gars"

10 Publications

  • Page 1 of 1

Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19.

N Engl J Med 2021 Apr 21. Epub 2021 Apr 21.

From Janssen Vaccines and Prevention, Leiden, the Netherlands (J. Sadoff, G. Shukarev, G. Scheper, M.L.G., H.S., J.V.H., M.D.); South African Research Council, Cape Town, South Africa (G.G.); Janssen Research and Development, Beerse, Belgium (A.V., C.T., H.F., B.S., K.O., M.F.R., N.C., T.T., K.H., J.R.G., F.S.); Janssen Research and Development, Spring House, PA (V.C.); Evandro Chagas National Institute of Infectious Diseases-Fiocruz, Rio de Janeiro (B.G.); the University of Alabama at Birmingham, Birmingham (P.A.G.); the National Institute of Allergy and Infectious Diseases, Rockville (K.L.T., M.A.M.), Walter Reed Army Institute of Research, Silver Spring (M.L.R.), and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (K.M.N.) - all in Maryland; Biomedical Advanced Research and Development Authority, Washington, DC (J.T.); the Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston (D.H.B.); Janssen Research and Development, Raritan, NJ (J. Stoddard); and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle (L.C.).

Background: The Ad26.COV2.S vaccine is a recombinant, replication-incompetent human adenovirus type 26 vector encoding full-length severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein in a prefusion-stabilized conformation.

Methods: In an international, randomized, double-blind, placebo-controlled, phase 3 trial, we randomly assigned adult participants in a 1:1 ratio to receive a single dose of Ad26.COV2.S (5×10 viral particles) or placebo. The primary end points were vaccine efficacy against moderate to severe-critical coronavirus disease 2019 (Covid-19) with an onset at least 14 days and at least 28 days after administration among participants in the per-protocol population who had tested negative for SARS-CoV-2. Safety was also assessed.

Results: The per-protocol population included 19,630 SARS-CoV-2-negative participants who received Ad26.COV2.S and 19,691 who received placebo. Ad26.COV2.S protected against moderate to severe-critical Covid-19 with onset at least 14 days after administration (116 cases in the vaccine group vs. 348 in the placebo group; efficacy, 66.9%; adjusted 95% confidence interval [CI], 59.0 to 73.4) and at least 28 days after administration (66 vs. 193 cases; efficacy, 66.1%; adjusted 95% CI, 55.0 to 74.8). Vaccine efficacy was higher against severe-critical Covid-19 (76.7% [adjusted 95% CI, 54.6 to 89.1] for onset at ≥14 days and 85.4% [adjusted 95% CI, 54.2 to 96.9] for onset at ≥28 days). Despite 86 of 91 cases (94.5%) in South Africa with sequenced virus having the 20H/501Y.V2 variant, vaccine efficacy was 52.0% and 64.0% against moderate to severe-critical Covid-19 with onset at least 14 days and at least 28 days after administration, respectively, and efficacy against severe-critical Covid-19 was 73.1% and 81.7%, respectively. Reactogenicity was higher with Ad26.COV2.S than with placebo but was generally mild to moderate and transient. The incidence of serious adverse events was balanced between the two groups. Three deaths occurred in the vaccine group (none were Covid-19-related), and 16 in the placebo group (5 were Covid-19-related).

Conclusions: A single dose of Ad26.COV2.S protected against symptomatic Covid-19 and asymptomatic SARS-CoV-2 infection and was effective against severe-critical disease, including hospitalization and death. Safety appeared to be similar to that in other phase 3 trials of Covid-19 vaccines. (Funded by Janssen Research and Development and others; ENSEMBLE ClinicalTrials.gov number, NCT04505722.).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJMoa2101544DOI Listing
April 2021

CytoGLMM: conditional differential analysis for flow and mass cytometry experiments.

BMC Bioinformatics 2021 Mar 22;22(1):137. Epub 2021 Mar 22.

Department of Statistics, Stanford University, Stanford, USA.

Background: Flow and mass cytometry are important modern immunology tools for measuring expression levels of multiple proteins on single cells. The goal is to better understand the mechanisms of responses on a single cell basis by studying differential expression of proteins. Most current data analysis tools compare expressions across many computationally discovered cell types. Our goal is to focus on just one cell type. Our narrower field of application allows us to define a more specific statistical model with easier to control statistical guarantees.

Results: Differential analysis of marker expressions can be difficult due to marker correlations and inter-subject heterogeneity, particularly for studies of human immunology. We address these challenges with two multiple regression strategies: a bootstrapped generalized linear model and a generalized linear mixed model. On simulated datasets, we compare the robustness towards marker correlations and heterogeneity of both strategies. For paired experiments, we find that both strategies maintain the target false discovery rate under medium correlations and that mixed models are statistically more powerful under the correct model specification. For unpaired experiments, our results indicate that much larger patient sample sizes are required to detect differences. We illustrate the CytoGLMM R package and workflow for both strategies on a pregnancy dataset.

Conclusion: Our approach to finding differential proteins in flow and mass cytometry data reduces biases arising from marker correlations and safeguards against false discoveries induced by patient heterogeneity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12859-021-04067-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7983283PMC
March 2021

Immunogenicity of the Ad26.COV2.S Vaccine for COVID-19.

JAMA 2021 04;325(15):1535-1544

Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts.

Importance: Control of the global COVID-19 pandemic will require the development and deployment of safe and effective vaccines.

Objective: To evaluate the immunogenicity of the Ad26.COV2.S vaccine (Janssen/Johnson & Johnson) in humans, including the kinetics, magnitude, and phenotype of SARS-CoV-2 spike-specific humoral and cellular immune responses.

Design, Setting, And Participants: Twenty-five participants were enrolled from July 29, 2020, to August 7, 2020, and the follow-up for this day 71 interim analysis was completed on October 3, 2020; follow-up to assess durability will continue for 2 years. This study was conducted at a single clinical site in Boston, Massachusetts, as part of a randomized, double-blind, placebo-controlled phase 1 clinical trial of Ad26.COV2.S.

Interventions: Participants were randomized to receive 1 or 2 intramuscular injections with 5 × 1010 viral particles or 1 × 1011 viral particles of Ad26.COV2.S vaccine or placebo administered on day 1 and day 57 (5 participants in each group).

Main Outcomes And Measures: Humoral immune responses included binding and neutralizing antibody responses at multiple time points following immunization. Cellular immune responses included immunospot-based and intracellular cytokine staining assays to measure T-cell responses.

Results: Twenty-five participants were randomized (median age, 42; age range, 22-52; 52% women, 44% male, 4% undifferentiated), and all completed the trial through the day 71 interim end point. Binding and neutralizing antibodies emerged rapidly by day 8 after initial immunization in 90% and 25% of vaccine recipients, respectively. By day 57, binding and neutralizing antibodies were detected in 100% of vaccine recipients after a single immunization. On day 71, the geometric mean titers of spike-specific binding antibodies were 2432 to 5729 and the geometric mean titers of neutralizing antibodies were 242 to 449 in the vaccinated groups. A variety of antibody subclasses, Fc receptor binding properties, and antiviral functions were induced. CD4+ and CD8+ T-cell responses were induced.

Conclusion And Relevance: In this phase 1 study, a single immunization with Ad26.COV2.S induced rapid binding and neutralization antibody responses as well as cellular immune responses. Two phase 3 clinical trials are currently underway to determine the efficacy of the Ad26.COV2.S vaccine.

Trial Registration: ClinicalTrials.gov Identifier: NCT04436276.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jama.2021.3645DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7953339PMC
April 2021

Interim Results of a Phase 1-2a Trial of Ad26.COV2.S Covid-19 Vaccine.

N Engl J Med 2021 Jan 13. Epub 2021 Jan 13.

From Janssen Vaccines and Prevention, Leiden, the Netherlands (J. Sadoff, M.L.G., G. Shukarev, A.M.G., J. Stoop, S.T., E.C., G. Scheper, J. Hendriks, M.D., J.V.H., H.S.); Janssen Research and Development, Beerse (D.H., C.T., F.S.), Janssen Clinical Pharmacology Unit, Merksem (W.V.D.), the Center for Vaccinology, Ghent University, Gent (I.L.-R.), SGS Life Sciences (P.-J.B.) and the Center for the Evaluation of Vaccination, University of Antwerp (P.V.D.), Antwerp, and the Center for Clinical Pharmacology, University Hospitals Leuven, Leuven (J. de Hoon) - all in Belgium; Optimal Research, Melbourne, FL (M.K.); the Alliance for Multispecialty Research, Knoxville, TN (W.S.); the Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston (K.E.S., D.H.B.); and the Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle (S.C.D.R., K.W.C., M.J.M.).

Background: Efficacious vaccines are urgently needed to contain the ongoing coronavirus disease 2019 (Covid-19) pandemic of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A candidate vaccine, Ad26.COV2.S, is a recombinant, replication-incompetent adenovirus serotype 26 (Ad26) vector encoding a full-length and stabilized SARS-CoV-2 spike protein.

Methods: In this multicenter, placebo-controlled, phase 1-2a trial, we randomly assigned healthy adults between the ages of 18 and 55 years (cohort 1) and those 65 years of age or older (cohort 3) to receive the Ad26.COV2.S vaccine at a dose of 5×10 viral particles (low dose) or 1×10 viral particles (high dose) per milliliter or placebo in a single-dose or two-dose schedule. Longer-term data comparing a single-dose regimen with a two-dose regimen are being collected in cohort 2; those results are not reported here. The primary end points were the safety and reactogenicity of each dose schedule.

Results: After the administration of the first vaccine dose in 805 participants in cohorts 1 and 3 and after the second dose in cohort 1, the most frequent solicited adverse events were fatigue, headache, myalgia, and injection-site pain. The most frequent systemic adverse event was fever. Systemic adverse events were less common in cohort 3 than in cohort 1 and in those who received the low vaccine dose than in those who received the high dose. Reactogenicity was lower after the second dose. Neutralizing-antibody titers against wild-type virus were detected in 90% or more of all participants on day 29 after the first vaccine dose (geometric mean titer [GMT], 224 to 354) and reached 100% by day 57 with a further increase in titers (GMT, 288 to 488), regardless of vaccine dose or age group. Titers remained stable until at least day 71. A second dose provided an increase in the titer by a factor of 2.6 to 2.9 (GMT, 827 to 1266). Spike-binding antibody responses were similar to neutralizing-antibody responses. On day 14, CD4+ T-cell responses were detected in 76 to 83% of the participants in cohort 1 and in 60 to 67% of those in cohort 3, with a clear skewing toward type 1 helper T cells. CD8+ T-cell responses were robust overall but lower in cohort 3.

Conclusions: The safety and immunogenicity profiles of Ad26.COV2.S support further development of this vaccine candidate. (Funded by Johnson & Johnson and the Biomedical Advanced Research and Development Authority of the Department of Health and Human Services; COV1001 ClinicalTrials.gov number, NCT04436276.).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJMoa2034201DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7821985PMC
January 2021

Pregnancy-Induced Alterations in NK Cell Phenotype and Function.

Front Immunol 2019 23;10:2469. Epub 2019 Oct 23.

Department of Medicine, Stanford University, Palo Alto, CA, United States.

Pregnant women are particularly susceptible to complications of influenza A virus infection, which may result from pregnancy-induced changes in the function of immune cells, including natural killer (NK) cells. To better understand NK cell function during pregnancy, we assessed the ability of the two main subsets of NK cells, CD56, and CD56 NK cells, to respond to influenza-virus infected cells and tumor cells. During pregnancy, CD56 and CD56 NK cells displayed enhanced functional responses to both infected and tumor cells, with increased expression of degranulation markers and elevated frequency of NK cells producing IFN-γ. To better understand the mechanisms driving this enhanced function, we profiled CD56 and CD56 NK cells from pregnant and non-pregnant women using mass cytometry. NK cells from pregnant women displayed significantly increased expression of several functional and activation markers such as CD38 on both subsets and NKp46 on CD56 NK cells. NK cells also displayed diminished expression of the chemokine receptor CXCR3 during pregnancy. Overall, these data demonstrate that functional and phenotypic shifts occur in NK cells during pregnancy that can influence the magnitude of the immune response to both infections and tumors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2019.02469DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6820503PMC
October 2020

[iNKT cells: potential therapeutic targets to fight anthrax].

Med Sci (Paris) 2017 May 14;33(5):488-490. Epub 2017 Jun 14.

Pathogénie des toxi-infections bactériennes, Institut Pasteur, 28, rue du Docteur Roux, 75724 Paris, France - Unité interactions hôte-agents pathogènes, institut de recherche biomédicale des armées, BP73, 91223 Brétigny-sur-Orge, France.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1051/medsci/20173305010DOI Listing
May 2017

Increased Proinflammatory Responses of Monocytes and Plasmacytoid Dendritic Cells to Influenza A Virus Infection During Pregnancy.

J Infect Dis 2016 Dec 21;214(11):1666-1671. Epub 2016 Sep 21.

Department of Medicine.

Pregnancy-induced alterations in immunity may contribute to the increased morbidity associated with influenza A virus infection during pregnancy. We characterized the immune response of monocytes and plasmacytoid dendritic cells (pDCs) to influenza A virus infection in 21 pregnant and 21 nonpregnant women. In pregnant women, monocytes and pDCs exhibit an exaggerated proinflammatory immune response to 2 strains of influenza A virus, compared with nonpregnant women, characterized by increased expression of major histocompatibility complex class II (approximately 2.0-fold), CD69 (approximately 2.2-fold), interferon γ-induced protein 10 (approximately 2.0-fold), and macrophage inflammatory protein 1β (approximately 1.5-fold). This enhanced innate inflammatory response during pregnancy could contribute to pulmonary inflammation following influenza A virus infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/infdis/jiw448DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5144734PMC
December 2016

Mechanisms of Invariant NKT Cell Activity in Restraining Bacillus anthracis Systemic Dissemination.

J Immunol 2016 10 7;197(8):3225-3232. Epub 2016 Sep 7.

Pathogénie des Toxi-Infections Bactériennes, Département de Microbiologie, Institut Pasteur, 75724 Paris, France.

Exogenous activation of invariant NKT (iNKT) cells by the superagonist α-galactosylceramide (α-GalCer) can protect against cancer, autoimmune diseases, and infections. In the current study, we investigated the effect of α-GalCer against Bacillus anthracis infection, the agent of anthrax. Using an experimental model of s.c. B. anthracis infection (an encapsulated nontoxigenic strain), we show that concomitant administration of α-GalCer delayed B. anthracis systemic dissemination and prolonged mouse survival. Depletion of subcapsular sinus CD169-positive macrophages by clodronate-containing liposome was associated with a lack of iNKT cell activation in the draining lymph nodes (dLNs) and prevented the protective effect of α-GalCer on bacterial dissemination out of the dLNs. Production of IFN-γ triggered chemokine (C-C motif) ligand 3 synthesis and recruitment of neutrophils in the dLNs, leading to the restraint of B. anthracis dissemination. Our data highlight a novel immunological pathway leading to the control of B. anthracis infection, a finding that might lead to improved therapeutics based on iNKT cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1600830DOI Listing
October 2016

Neutrophil elastase degrades cystic fibrosis transmembrane conductance regulator via calpains and disables channel function in vitro and in vivo.

Am J Respir Crit Care Med 2013 Jan 6;187(2):170-9. Epub 2012 Dec 6.

Institut Pasteur,Unité de Défense Innée et Inflammation, 25 rue du Dr Roux, 75724 Paris, France.

Rationale: Cystic fibrosis transmembrane conductance regulator (CFTR) protein is a chloride channel regulating fluid homeostasis at epithelial surfaces. Its loss of function induces hypohydration, mucus accumulation, and bacterial infections in CF and potentially other lung chronic diseases.

Objectives: To test whether neutrophil elastase (NE) and neutrophil-mediated inflammation negatively impact CFTR structure and function, in vitro and in vivo.

Methods: Using an adenovirus-CFTR overexpression approach, we showed that NE degrades wild-type (WT)- and ΔF508-CFTR in vitro and WT-CFTR in mice through a new pathway involving the activation of intracellular calpains.

Measurements And Main Results: CFTR degradation triggered a loss of function, as measured in vitro by channel patch-clamp and in vivo by nasal potential recording in mice. Importantly, this mechanism was also shown to be operative in a Pseudomonas aeruginosa lung infection murine model, and was NE-dependent, because CFTR integrity was significantly protected in NE(-/-) mice compared with WT mice.

Conclusions: These data provide a new mechanism and show for the first time a link between NE-calpains activation and CFTR loss of function in bacterial lung infections relevant to CF and to other chronic inflammatory lung conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1164/rccm.201205-0875OCDOI Listing
January 2013

Toll-like receptor 5 (TLR5), IL-1β secretion, and asparagine endopeptidase are critical factors for alveolar macrophage phagocytosis and bacterial killing.

Proc Natl Acad Sci U S A 2012 Jan 17;109(5):1619-24. Epub 2012 Jan 17.

Unité de Défense Innée et Inflammation, Institut Pasteur, 75724 Paris, France.

A deficit in early clearance of Pseudomonas aeruginosa (P. aeruginosa) is crucial in nosocomial pneumonia and in chronic lung infections. Few studies have addressed the role of Toll-like receptors (TLRs), which are early pathogen associated molecular pattern receptors, in pathogen uptake and clearance by alveolar macrophages (AMs). Here, we report that TLR5 engagement is crucial for bacterial clearance by AMs in vitro and in vivo because unflagellated P. aeruginosa or different mutants defective in TLR5 activation were resistant to AM phagocytosis and killing. In addition, the clearance of PAK (a wild-type P. aeruginosa strain) by primary AMs was causally associated with increased IL-1β release, which was dramatically reduced with PAK mutants or in WT PAK-infected primary TLR5(-/-) AMs, demonstrating the dependence of IL-1β production on TLR5. We showed that this IL-1β production was important in endosomal pH acidification and in inducing the killing of bacteria by AMs through asparagine endopeptidase (AEP), a key endosomal cysteine protease. In agreement, AMs from IL-1R1(-/-) and AEP(-/-) mice were unable to kill P. aeruginosa. Altogether, these findings demonstrate that TLR5 engagement plays a major role in P. aeruginosa internalization and in triggering IL-1β formation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1108464109DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3277124PMC
January 2012