Publications by authors named "Mathias Gorski"

45 Publications

Discovery and prioritization of variants and genes for kidney function in >1.2 million individuals.

Nat Commun 2021 07 16;12(1):4350. Epub 2021 Jul 16.

Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany.

Genes underneath signals from genome-wide association studies (GWAS) for kidney function are promising targets for functional studies, but prioritizing variants and genes is challenging. By GWAS meta-analysis for creatinine-based estimated glomerular filtration rate (eGFR) from the Chronic Kidney Disease Genetics Consortium and UK Biobank (n = 1,201,909), we expand the number of eGFRcrea loci (424 loci, 201 novel; 9.8% eGFRcrea variance explained by 634 independent signal variants). Our increased sample size in fine-mapping (n = 1,004,040, European) more than doubles the number of signals with resolved fine-mapping (99% credible sets down to 1 variant for 44 signals, ≤5 variants for 138 signals). Cystatin-based eGFR and/or blood urea nitrogen association support 348 loci (n = 460,826 and 852,678, respectively). Our customizable tool for Gene PrioritiSation reveals 23 compelling genes including mechanistic insights and enables navigation through genes and variants likely relevant for kidney function in human to help select targets for experimental follow-up.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-24491-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8285412PMC
July 2021

Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline.

Kidney Int 2021 04 31;99(4):926-939. Epub 2020 Oct 31.

Division of Nephrology, University of Washington, Seattle, Washington, USA; Kidney Research Institute, University of Washington, Seattle, Washington, USA.

Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m at follow-up among those with eGFRcrea 60 mL/min/1.73m or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.kint.2020.09.030DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010357PMC
April 2021

Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels.

Nat Genet 2019 10 2;51(10):1459-1474. Epub 2019 Oct 2.

Department of Neurobiology, Care Sciences and Society, Division of Family Medicine and Primary Care, Karolinska Institutet, Stockholm, Sweden.

Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci and colocalization with gene expression in 47 tissues implicated the kidney and liver as the main target organs and prioritized potentially causal genes and variants, including the transcriptional master regulators in the liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A transactivated the promoter of ABCG2, encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a functional variant. Transcriptional coregulation within and across organs may be a general mechanism underlying the observed pleiotropy between urate and cardiometabolic traits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0504-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858555PMC
October 2019

Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria.

Nat Commun 2019 09 11;10(1):4130. Epub 2019 Sep 11.

Department of Medicine, Division of Nephrology and Hypertension, University of Utah, Salt Lake City, UT, USA.

Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-11576-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739370PMC
September 2019

Mapping eGFR loci to the renal transcriptome and phenome in the VA Million Veteran Program.

Nat Commun 2019 08 26;10(1):3842. Epub 2019 Aug 26.

Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA.

Chronic kidney disease (CKD), defined by low estimated glomerular filtration rate (eGFR), contributes to global morbidity and mortality. Here we conduct a transethnic Genome-Wide Association Study of eGFR in 280,722 participants of the Million Veteran Program (MVP), with replication in 765,289 participants from the Chronic Kidney Disease Genetics (CKDGen) Consortium. We identify 82 previously unreported variants, confirm 54 loci, and report interesting findings including association of the sickle cell allele of betaglobin among non-Hispanic blacks. Our transcriptome-wide association study of kidney function in healthy kidney tissue identifies 36 previously unreported and nine known genes, and maps gene expression to renal cell types. In a Phenome-Wide Association Study in 192,868 MVP participants using a weighted genetic score we detect associations with CKD stages and complications and kidney stones. This investigation reinterprets the genetic architecture of kidney function to identify the gene, tissue, and anatomical context of renal homeostasis and the clinical consequences of dysregulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-11704-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710266PMC
August 2019

A catalog of genetic loci associated with kidney function from analyses of a million individuals.

Nat Genet 2019 06 31;51(6):957-972. Epub 2019 May 31.

Diabetes and Cardiovascular Disease-Genetic Epidemiology, Department of Clincial Sciences in Malmö, Lund University, Malmö, Sweden.

Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through trans-ancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these, 147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0407-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698888PMC
June 2019

On the differences between mega- and meta-imputation and analysis exemplified on the genetics of age-related macular degeneration.

Genet Epidemiol 2019 07 23;43(5):559-576. Epub 2019 Apr 23.

Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany.

While current genome-wide association analyses often rely on meta-analysis of study-specific summary statistics, individual participant data (IPD) from multiple studies increase options for modeling. When multistudy IPD is available, however, it is unclear whether this data is to be imputed and modeled across all participants (mega-imputation and mega-analysis) or study-specifically (meta-imputation and meta-analysis). Here, we investigated different approaches toward imputation and analysis using 52,189 subjects from 25 studies of the International Age-related Macular Degeneration (AMD) Genomics Consortium including, 16,144 AMD cases and 17,832 controls for association analysis. From 27,448,454 genetic variants after 1,000-Genomes-based imputation, mega-imputation yielded ~400,000 more variants with high imputation quality (mostly rare variants) compared to meta-imputation. For AMD signal detection (P < 5 × 10 ) in mega-imputed data, most loci were detected with mega-analysis without adjusting for study membership (40 loci, including 34 known); we considered these loci genuine, since genetic effects and P-values were comparable across analyses. In meta-imputed data, we found 31 additional signals, mostly near chromosome tails or reference panel gaps, which disappeared after accounting for interaction of whole-genome amplification (WGA) with study membership or after excluding studies with WGA-participants. For signal detection with multistudy IPD, we recommend mega-imputation and mega-analysis, with meta-imputation followed by meta-analysis being a computationally appealing alternative.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/gepi.22204DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6619271PMC
July 2019

Poor risk factor control in outpatients with diabetes mellitus type 2 in Germany: The DIAbetes COhoRtE (DIACORE) study.

PLoS One 2019 21;14(3):e0213157. Epub 2019 Mar 21.

Department of Nephrology, University Hospital Regensburg, Regensburg, Germany.

Introduction: Patients with diabetes mellitus type 2 (DM2) are at high risk for micro- and macrovascular disease. Here, we explore the degree of traditional risk factor control in the baseline visit of a cohort of DM2 outpatients.

Methods: DIACORE (DIAbetes COhoRtE) is a prospective cohort study of 3000 adult DM2 outpatients. Here, we present results from the baseline visit. Sociodemographic and anthropometric variables, cardiovascular risk factors, comorbidities and medication were assessed by interview and medical exams. Serum-creatinine based estimated glomerular filtration rate (eGFRcrea) and urinary albumin-creatinine ratio (UACR) were determined for classification of chronic kidney disease (CKD). The proportion of patients with adequate control of traditional risk factors (blood pressure<140/90mmHg, HbA1c<7.5%, LDL<100mg/dl) was calculated in 2892 patients with non-missing data in 9 relevant variables within each KDIGO 2012 CKD class.

Results: In the analyzed baseline data (n = 2892, 60.2% men), mean (standard deviation) values for age, DM2 duration and HbA1c were 65.3 (9.3) years, 10.3 (8.4) years and 6.9% (1.1) respectively. Of these 2892 patients, 18.7% had CKD stage 3 or higher, 25.7% had UACR≥30mg/g. Adequate blood pressure, HbA1c and LDL control was achieved in 55.7%, 78.5% and 34.4%, respectively. In 16.4% of patients (473), all three risk factors were below recommended targets. The proportion of adequate risk factor control was similar across KDIGO eGFRcrea classes. Adequate blood pressure and HbA1c control were significantly associated with lower UACR category without and with controlling for other risk factors (p<0.0001, p = 0.0002, respectively).

Conclusion: In our study of patients with diabetes mellitus type 2, we observed a low level of risk factor control indicating potential for risk reduction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213157PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428304PMC
December 2019

Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution.

Nat Genet 2019 03 18;51(3):452-469. Epub 2019 Feb 18.

Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA.

Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF ≥5%) and nine low-frequency or rare (MAF <5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0334-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560635PMC
March 2019

Daytime napping and diabetes-associated kidney disease.

Sleep Med 2019 02 25;54:205-212. Epub 2018 Nov 25.

Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany. Electronic address:

Background: Diabetes-associated Kidney Disease (DKD) is a common comorbidity in patients with type 2 diabetes. The present study investigates whether daytime sleeping duration in patients, ill with type 2 diabetes, is associated with DKD.

Methods: A total of 733 outpatients of the cross-sectional baseline survey of the DIACORE study were analyzed with respect to their self-reported daytime sleeping duration, assessed by a standardized questionnaire. DKD was defined as eGFR <60 ml/min/1.73 m and/or urinary albumin-to-creatinine-ratio (UACR) > 30 mg/g.

Results: Mean daytime sleeping duration was 17 ± 27 min. With increasing daytime sleeping duration a statistically significant decrease in eGFR (p = 0.002) and increase in UACR (p < 0.001) were found, respectively. Prevalence of DKD was significantly higher in patients with longer daytime sleeping duration (31% in patients not napping, 40% in patients napping less than 30 min, 47% in patients napping 30-60 min, 56% in patients napping 60 min or more; p = 0.001). After accounting for known modulators (Age, sex, BMI, waist-hip-ratio, systolic and diastolic blood pressure, physical activity, diabetes duration, HbA1c, homeostasis model assessment (HOMA-Index), nighttime sleeping duration, apnea-hypopnea-index (AHI), Epworth Sleepiness Scale (ESS)), longer daytime sleeping duration was significantly associated with impaired eGFR [B (95% CI) = -0.05 (-0.09; 0.00), p = 0.044] and increased UACR [B (95% CI) = 0.01 (0.01; 0.02), p < 0.001], respectively.

Conclusion: Increased daytime sleeping duration is significantly associated with reduced eGFR and higher UACR, independent of known modulators of DKD. The direction of this relationship remains unclear.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.sleep.2018.10.034DOI Listing
February 2019

Publisher Correction: Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity.

Nat Genet 2018 05;50(5):766-767

Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany.

In the version of this article originally published, one of the two authors with the name Wei Zhao was omitted from the author list and the affiliations for both authors were assigned to the single Wei Zhao in the author list. In addition, the ORCID for Wei Zhao (Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA) was incorrectly assigned to author Wei Zhou. The errors have been corrected in the HTML and PDF versions of the article.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0082-3DOI Listing
May 2018

Investigating the modulation of genetic effects on late AMD by age and sex: Lessons learned and two additional loci.

PLoS One 2018 12;13(3):e0194321. Epub 2018 Mar 12.

Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany.

Late-stage age-related macular degeneration (AMD) is the leading cause of visual impairment in the elderly with a complex etiology. The most important non-modifiable risk factors for onset and progression of late AMD are age and genetic risk factors, however, little is known about the interplay between genetics and age or sex. Here, we conducted a large-scale age- and sex-stratified genome-wide association study (GWAS) using 1000 Genomes imputed genome-wide and ExomeChip data (>12 million variants). The data were established by the International Age-related Macular Degeneration Genomics Consortium (IAMDGC) from 16,144 late AMD cases and 17,832 controls. Our systematic search for interaction effects yielded significantly stronger effects among younger individuals at two known AMD loci (near CFH and ARMS2/HTRA1). Accounting for age and gene-age interaction using a joint test identified two additional AMD loci compared to the previous main effect scan. One of these two is a novel AMD GWAS locus, near the retinal clusterin-like protein (CLUL1) gene, and the other, near the retinaldehyde binding protein 1 (RLBP1), was recently identified in a joint analysis of nuclear and mitochondrial variants. Despite considerable power in our data, neither sex-dependent effects nor effects with opposite directions between younger and older individuals were observed. This is the first genome-wide interaction study to incorporate age, sex and their interaction with genetic effects for late AMD. Results diminish the potential for a role of sex in the etiology of late AMD yet highlight the importance and existence of age-dependent genetic effects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194321PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5846797PMC
July 2018

Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity.

Nat Genet 2018 01 22;50(1):26-41. Epub 2017 Dec 22.

Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany.

Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-017-0011-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5945951PMC
January 2018

HDL-cholesterol levels and risk of age-related macular degeneration: a multiethnic genetic study using Mendelian randomization.

Int J Epidemiol 2017 12;46(6):1891-1902

Singapore Eye Research Institute, Singapore National Eye Center, Singapore.

Background: Dyslipidemia, particularly high-density lipoprotein cholesterol (HDL-C), has recently been implicated in the pathogenesis of age-related macular degeneration (AMD), the leading cause of vision loss. However, epidemiological studies have yielded conflicting results.

Methods: We investigated the causal role of plasma lipid levels in AMD in multiethnic populations comprising 16 144 advanced AMD cases and 17 832 controls of European descent, together with 2219 cases and 5275 controls of Asian descent, using Mendelian randomization in three models. Model 1 is a conventional meta-analysis which does not account for pleiotropy of instrumental variable (IV) effects. Model 2 is a univariate, inverse variance weighted regression analysis that accounts for potential unbalanced pleiotropy using MR-Egger method. Finally, Model 3 is a multivariate regression analysis that addresses pleiotropy by MR-Egger method and by adjusting for effects on other lipid traits.

Results: A 1 standard deviation (SD) higher HDL-cholesterol level was associated with an odds ratio (OR) for AMD of 1.17 (95% confidence interval: 1.07-1.29) in Europeans (P = 6.88 × 10-4) and of 1.58 (1.24-2.00) in Asians (P = 2.92 × 10-4) in Model 3. The corresponding OR estimates were 1.30 (1.09-1.55) in Europeans (P = 3.18 × 10-3) and 1.42 (1.11-1.80) in Asians (P = 4.42 × 10-3) in Model 1, and 1.21 (1.11-1.31) in Europeans (P = 3.12 × 10-5) and 1.51 (1.20-1.91) in Asians (P = 7.61 × 10-4) in Model 2. Conversely, neither LDL-C (Europeans: OR = 0.96, P = 0.272; Asians: OR = 1.02, P = 0.874; Model 3) nor triglyceride levels (Europeans: OR = 0.91, P = 0.102; Asians: OR = 1.06, P = 0.613) were associated with AMD. We also assessed the association between lipid levels and polypoidal choroidal vasculopathy (PCV) in Asians, a subtype of AMD, and found a similar trend for association of PCV with HDL-C levels.

Conclusions: Our study shows that high levels of plasma HDL-C are causally associated with an increased risk for advanced AMD in European and Asian populations, implying that strategies reducing HDL-C levels may be useful to prevent and treat AMD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ije/dyx189DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5837540PMC
December 2017

1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function.

Sci Rep 2017 04 28;7:45040. Epub 2017 Apr 28.

Department of Nephrology, University Hospital Regensburg, Regensburg, Germany.

HapMap imputed genome-wide association studies (GWAS) have revealed >50 loci at which common variants with minor allele frequency >5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-analysis of kidney function based on the estimated glomerular filtration rate (eGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value < 5 × 10 previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR < 0.05) genes and 127 significantly (FDR < 0.05) enriched gene sets, which were missed by our previous analyses. Among those, the 10 identified novel genes are part of pathways of kidney development, carbohydrate metabolism, cardiac septum development and glucose metabolism. These results highlight the utility of re-imputing from denser reference panels, until whole-genome sequencing becomes feasible in large samples.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/srep45040DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408227PMC
April 2017

Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits.

Nat Commun 2017 04 26;8:14977. Epub 2017 Apr 26.

Centre for Genetic Origins of Health and Disease, University of Western Australia, Crawley, Australia.

Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms14977DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5414044PMC
April 2017

and Loci Associate with Plasma Osmolality.

J Am Soc Nephrol 2017 Aug 30;28(8):2311-2321. Epub 2017 Mar 30.

Due to the number of contributing authors, the affiliations are listed in the supplemental material.

Disorders of water balance, an excess or deficit of total body water relative to body electrolyte content, are common and ascertained by plasma hypo- or hypernatremia, respectively. We performed a two-stage genome-wide association study meta-analysis on plasma sodium concentration in 45,889 individuals of European descent (stage 1 discovery) and 17,637 additional individuals of European descent (stage 2 replication), and a transethnic meta-analysis of replicated single-nucleotide polymorphisms in 79,506 individuals (63,526 individuals of European descent, 8765 individuals of Asian Indian descent, and 7215 individuals of African descent). In stage 1, we identified eight loci associated with plasma sodium concentration at <5.0 × 10 Of these, rs9980 at replicated in stage 2 meta-analysis (=3.1 × 10), with combined stages 1 and 2 genome-wide significance of =5.6 × 10 Transethnic meta-analysis further supported the association at rs9980 (=5.9 × 10). Additionally, rs16846053 at showed nominally, but not genome-wide, significant association in combined stages 1 and 2 meta-analysis (=6.7 × 10). encodes a ubiquitously expressed transcription factor that coordinates the intracellular response to hypertonic stress but was not previously implicated in the regulation of systemic water balance. encodes a sodium bicarbonate transporter with a brain-restricted expression pattern, and variant rs16846053 affects a putative intronic NFAT5 DNA binding motif. The lead variants for and are expression quantitative trait loci in tissues of the central nervous system and relevant to transcriptional regulation. Thus, genetic variation in and expression and function in the central nervous system may affect the regulation of systemic water balance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1681/ASN.2016080892DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5533231PMC
August 2017

Genetic pleiotropy between age-related macular degeneration and 16 complex diseases and traits.

Genome Med 2017 03 27;9(1):29. Epub 2017 Mar 27.

Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.

Background: Age-related macular degeneration (AMD) is a common condition of vision loss with disease development strongly influenced by environmental and genetic factors. Recently, 34 loci were associated with AMD at genome-wide significance. So far, little is known about a genetic overlap between AMD and other complex diseases or disease-relevant traits.

Methods: For each of 60 complex diseases/traits with publicly available genome-wide significant association data, the lead genetic variant per independent locus was extracted and a genetic score was calculated for each disease/trait as the weighted sum of risk alleles. The association with AMD was estimated based on 16,144 AMD cases and 17,832 controls using logistic regression.

Results: Of the respective disease/trait variance, the 60 genetic scores explained on average 4.8% (0.27-20.69%) and 16 of them were found to be significantly associated with AMD (Q-values < 0.01, p values from < 1.0 × 10 to 1.9 × 10). Notably, an increased risk for AMD was associated with reduced risk for cardiovascular diseases, increased risk for autoimmune diseases, higher HDL and lower LDL levels in serum, lower bone-mineral density as well as an increased risk for skin cancer. By restricting the analysis to 1824 variants initially used to compute the 60 genetic scores, we identified 28 novel AMD risk variants (Q-values < 0.01, p values from 1.1 × 10 to 3.0 × 10), known to be involved in cardiovascular disorders, lipid metabolism, autoimmune diseases, anthropomorphic traits, ocular disorders, and neurological diseases. The latter variants represent 20 novel AMD-associated, pleiotropic loci. Genes in the novel loci reinforce previous findings strongly implicating the complement system in AMD pathogenesis.

Conclusions: We demonstrate a substantial overlap of the genetics of several complex diseases/traits with AMD and provide statistically significant evidence for an additional 20 loci associated with AMD. This highlights the possibility that so far unrelated pathologies may have disease pathways in common.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13073-017-0418-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5368911PMC
March 2017

A functional variant in NEPH3 gene confers high risk of renal failure in primary hematuric glomerulopathies. Evidence for predisposition to microalbuminuria in the general population.

PLoS One 2017 23;12(3):e0174274. Epub 2017 Mar 23.

Department of Biological Sciences and Molecular Medicine Research Center, University of Cyprus, Nicosia, Cyprus.

Background: Recent data emphasize that thin basement membrane nephropathy (TBMN) should not be viewed as a form of benign familial hematuria since chronic renal failure (CRF) and even end-stage renal disease (ESRD), is a possible development for a subset of patients on long-term follow-up, through the onset of focal and segmental glomerulosclerosis (FSGS). We hypothesize that genetic modifiers may explain this variability of symptoms.

Methods: We looked in silico for potentially deleterious functional SNPs, using very strict criteria, in all the genes significantly expressed in the slit diaphragm (SD). Two variants were genotyped in a cohort of well-studied adult TBMN patients from 19 Greek-Cypriot families, with a homogeneous genetic background. Patients were categorized as "Severe" or "Mild", based on the presence or not of proteinuria, CRF and ESRD. A larger pooled cohort (HEMATURIA) of 524 patients, including IgA nephropathy patients, was used for verification. Additionally, three large general population cohorts [Framingham Heart Study (FHS), KORAF4 and SAPHIR] were used to investigate if the NEPH3-V353M variant has any renal effect in the general population.

Results And Conclusions: Genotyping for two high-scored variants in 103 TBMN adult patients with founder mutations who were classified as mildly or severely affected, pointed to an association with variant NEPH3-V353M (filtrin). This promising result prompted testing in the larger pooled cohort (HEMATURIA), indicating an association of the 353M variant with disease severity under the dominant model (p = 3.0x10-3, OR = 6.64 adjusting for gender/age; allelic association: p = 4.2x10-3 adjusting for patients' kinships). Subsequently, genotyping 6,531 subjects of the Framingham Heart Study (FHS) revealed an association of the homozygous 353M/M genotype with microalbuminuria (p = 1.0x10-3). Two further general population cohorts, KORAF4 and SAPHIR confirmed the association, and a meta-analysis of all three cohorts (11,258 individuals) was highly significant (p = 1.3x10-5, OR = 7.46). Functional studies showed that Neph3 homodimerization and Neph3-Nephrin heterodimerization are disturbed by variant 353M. Additionally, 353M was associated with differential activation of the unfolded protein response pathway, when overexpressed in stressed cultured undifferentiated podocyte cells, thus attesting to its functional significance. Genetics and functional studies support a "rare variant-strong effect" role for NEPH3-V353M, by exerting a negative modifier effect on primary glomerular hematuria. Additionally, genetics studies provide evidence for a role in predisposing homozygous subjects of the general population to micro-albuminuria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0174274PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5363870PMC
August 2017

Rare and low-frequency coding variants alter human adult height.

Nature 2017 02 1;542(7640):186-190. Epub 2017 Feb 1.

Netherlands Comprehensive Cancer Organisation, Utrecht, 3501 DB, The Netherlands.

Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature21039DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302847PMC
February 2017

Genetic invalidation of Lp-PLA as a therapeutic target: Large-scale study of five functional Lp-PLA-lowering alleles.

Eur J Prev Cardiol 2017 03 8;24(5):492-504. Epub 2016 Dec 8.

25 Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA.

Aims Darapladib, a potent inhibitor of lipoprotein-associated phospholipase A (Lp-PLA), has not reduced risk of cardiovascular disease outcomes in recent randomized trials. We aimed to test whether Lp-PLA enzyme activity is causally relevant to coronary heart disease. Methods In 72,657 patients with coronary heart disease and 110,218 controls in 23 epidemiological studies, we genotyped five functional variants: four rare loss-of-function mutations (c.109+2T > C (rs142974898), Arg82His (rs144983904), Val279Phe (rs76863441), Gln287Ter (rs140020965)) and one common modest-impact variant (Val379Ala (rs1051931)) in PLA2G7, the gene encoding Lp-PLA. We supplemented de-novo genotyping with information on a further 45,823 coronary heart disease patients and 88,680 controls in publicly available databases and other previous studies. We conducted a systematic review of randomized trials to compare effects of darapladib treatment on soluble Lp-PLA activity, conventional cardiovascular risk factors, and coronary heart disease risk with corresponding effects of Lp-PLA-lowering alleles. Results Lp-PLA activity was decreased by 64% ( p = 2.4 × 10) with carriage of any of the four loss-of-function variants, by 45% ( p < 10) for every allele inherited at Val279Phe, and by 2.7% ( p = 1.9 × 10) for every allele inherited at Val379Ala. Darapladib 160 mg once-daily reduced Lp-PLA activity by 65% ( p < 10). Causal risk ratios for coronary heart disease per 65% lower Lp-PLA activity were: 0.95 (0.88-1.03) with Val279Phe; 0.92 (0.74-1.16) with carriage of any loss-of-function variant; 1.01 (0.68-1.51) with Val379Ala; and 0.95 (0.89-1.02) with darapladib treatment. Conclusions In a large-scale human genetic study, none of a series of Lp-PLA-lowering alleles was related to coronary heart disease risk, suggesting that Lp-PLA is unlikely to be a causal risk factor.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/2047487316682186DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5460752PMC
March 2017

and Loci Identified through Large-Scale Exome Chip Analysis Regulate Kidney Development and Function.

J Am Soc Nephrol 2017 Mar 5;28(3):981-994. Epub 2016 Dec 5.

Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Genome-wide association studies have identified >50 common variants associated with kidney function, but these variants do not fully explain the variation in eGFR. We performed a two-stage meta-analysis of associations between genotypes from the Illumina exome array and eGFR on the basis of serum creatinine (eGFRcrea) among participants of European ancestry from the CKDGen Consortium (: 111,666; : 48,343). In single-variant analyses, we identified single nucleotide polymorphisms at seven new loci associated with eGFRcrea (, , and ; <3.7×10), of which most were common and annotated as nonsynonymous variants. Gene-based analysis identified associations of functional rare variants in three genes with eGFRcrea, including a novel association with the SOS Ras/Rho guanine nucleotide exchange factor 2 gene, (=5.4×10 by sequence kernel association test). Experimental follow-up in zebrafish embryos revealed changes in glomerular gene expression and renal tubule morphology in the embryonic kidney of and -knockdowns. These developmental abnormalities associated with altered blood clearance rate and heightened prevalence of edema. This study expands the number of loci associated with kidney function and identifies novel genes with potential roles in kidney formation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1681/ASN.2016020131DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5328154PMC
March 2017

A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape.

Nat Commun 2016 11 23;7:13357. Epub 2016 Nov 23.

Department of Kinesiology, Laval University, Québec, Québec, Canada G1V 0A6.

Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms13357DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5114527PMC
November 2016

The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals.

Nat Genet 2016 10 12;48(10):1171-1184. Epub 2016 Sep 12.

Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA.

To dissect the genetic architecture of blood pressure and assess effects on target organ damage, we analyzed 128,272 SNPs from targeted and genome-wide arrays in 201,529 individuals of European ancestry, and genotypes from an additional 140,886 individuals were used for validation. We identified 66 blood pressure-associated loci, of which 17 were new; 15 harbored multiple distinct association signals. The 66 index SNPs were enriched for cis-regulatory elements, particularly in vascular endothelial cells, consistent with a primary role in blood pressure control through modulation of vascular tone across multiple tissues. The 66 index SNPs combined in a risk score showed comparable effects in 64,421 individuals of non-European descent. The 66-SNP blood pressure risk score was significantly associated with target organ damage in multiple tissues but with minor effects in the kidney. Our findings expand current knowledge of blood pressure-related pathways and highlight tissues beyond the classical renal system in blood pressure regulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3667DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5042863PMC
October 2016

Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci.

Nat Genet 2016 10 12;48(10):1162-70. Epub 2016 Sep 12.

Bill and Melinda Gates Foundation, Seattle, Washington, USA.

Meta-analyses of association results for blood pressure using exome-centric single-variant and gene-based tests identified 31 new loci in a discovery stage among 146,562 individuals, with follow-up and meta-analysis in 180,726 additional individuals (total n = 327,288). These blood pressure-associated loci are enriched for known variants for cardiometabolic traits. Associations were also observed for the aggregation of rare and low-frequency missense variants in three genes, NPR1, DBH, and PTPMT1. In addition, blood pressure associations at 39 previously reported loci were confirmed. The identified variants implicate biological pathways related to cardiometabolic traits, vascular function, and development. Several new variants are inferred to have roles in transcription or as hubs in protein-protein interaction networks. Genetic risk scores constructed from the identified variants were strongly associated with coronary disease and myocardial infarction. This large collection of blood pressure-associated loci suggests new therapeutic strategies for hypertension, emphasizing a link with cardiometabolic risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3660DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5320952PMC
October 2016

Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

Nat Commun 2016 Jan 21;7:10023. Epub 2016 Jan 21.

Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands.

Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms10023DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4735748PMC
January 2016
-->