Publications by authors named "Mathias Buttmann"

58 Publications

Lack of NFATc1 SUMOylation prevents autoimmunity and alloreactivity.

J Exp Med 2021 Jan;218(1)

Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany.

Posttranslational modification with SUMO is known to regulate the activity of transcription factors, but how SUMOylation of individual proteins might influence immunity is largely unexplored. The NFAT transcription factors play an essential role in antigen receptor-mediated gene regulation. SUMOylation of NFATc1 represses IL-2 in vitro, but its role in T cell-mediated immune responses in vivo is unclear. To this end, we generated a novel transgenic mouse in which SUMO modification of NFATc1 is prevented. Avoidance of NFATc1 SUMOylation ameliorated experimental autoimmune encephalomyelitis as well as graft-versus-host disease. Elevated IL-2 production in T cells promoted T reg expansion and suppressed autoreactive or alloreactive immune responses. Mechanistically, increased IL-2 secretion counteracted IL-17 and IFN-γ expression through STAT5 and Blimp-1 induction. Then, Blimp-1 repressed IL-2 itself, as well as the induced, proliferation-associated survival factor Bcl2A1. Collectively, these data demonstrate that prevention of NFATc1 SUMOylation fine-tunes T cell responses toward lasting tolerance. Thus, targeting NFATc1 SUMOylation presents a novel and promising strategy to treat T cell-mediated inflammatory diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1084/jem.20181853DOI Listing
January 2021

Cerebrospinal fluid findings in patients with myelin oligodendrocyte glycoprotein (MOG) antibodies. Part 1: Results from 163 lumbar punctures in 100 adult patients.

J Neuroinflammation 2020 Sep 3;17(1):261. Epub 2020 Sep 3.

Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany.

Background: New-generation cell-based assays have demonstrated a robust association of serum autoantibodies to full-length human myelin oligodendrocyte glycoprotein (MOG-IgG) with (mostly recurrent) optic neuritis, myelitis, and brainstem encephalitis, as well as with neuromyelitis optica (NMO)-like or acute-disseminated encephalomyelitis (ADEM)-like presentations. However, only limited data are yet available on cerebrospinal fluid (CSF) findings in MOG-IgG-associated encephalomyelitis (MOG-EM; also termed MOG antibody-associated disease, MOGAD).

Objective: To describe systematically the CSF profile in MOG-EM.

Material And Methods: Cytological and biochemical findings (including white cell counts and differentiation; frequency and patterns of oligoclonal bands; IgG/IgM/IgA and albumin concentrations and CSF/serum ratios; intrathecal IgG/IgA/IgM fractions; locally produced IgG/IgM/IgA concentrations; immunoglobulin class patterns; IgG/IgA/IgM reibergrams; Link index; measles/rubella/zoster (MRZ) reaction; other anti-viral and anti-bacterial antibody indices; CSF total protein; CSF L-lactate) from 163 lumbar punctures in 100 adult patients of mainly Caucasian descent with MOG-EM were analyzed retrospectively.

Results: Most strikingly, CSF-restricted oligoclonal IgG bands, a hallmark of multiple sclerosis (MS), were absent in almost 90% of samples (N = 151), and the MRZ reaction, the most specific laboratory marker of MS known so far, in 100% (N = 62). If present, intrathecal IgG (and, more rarely, IgM) synthesis was low, often transient and mostly restricted to acute attacks. CSF WCC was elevated in > 50% of samples (median 31 cells/μl; mostly lymphocytes and monocytes; > 100/μl in 12%). Neutrophils were present in > 40% of samples; activated lymphocytes were found less frequently and eosinophils and/or plasma cells only very rarely (< 4%). Blood-CSF barrier dysfunction (as indicated by an elevated albumin CSF/serum ratio) was present in 48% of all samples and at least once in 55% of all patients (N = 88) tested. The frequency and degree of CSF alterations were significantly higher in patients with acute myelitis than in patients with acute ON and varied strongly depending on attack severity. CSF L-lactate levels correlated significantly with the spinal cord lesion load in patients with acute myelitis (p < 0.0001). Like pleocytosis, blood-CSF barrier dysfunction was present also during remission in a substantial number of patients.

Conclusion: MOG-IgG-positive EM is characterized by CSF features that are distinct from those in MS. Our findings are important for the differential diagnosis of MS and MOG-EM and add to the understanding of the immunopathogenesis of this newly described autoimmune disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12974-020-01824-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7470615PMC
September 2020

The Rare Signal Peptide Coding Variant rs28385692 Decreases Secretion of IL-22BP Isoform-1, -2 and -3 and Is Associated with Risk for Multiple Sclerosis.

Cells 2020 01 10;9(1). Epub 2020 Jan 10.

Neurogenomiks Laboratory, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.

The locus is associated with risk for multiple sclerosis (MS) but causative variants are yet to be determined. In a single nucleotide polymorphism (SNP) screen of this locus in a Basque population, rs28385692, a rare coding variant substituting Leu for Pro at position 16 emerged significantly ( = 0.02). This variant is located in the signal peptide (SP) shared by the three secreted protein isoforms produced by (IL-22 binding protein-1(IL-22BPi1), IL-22BPi2 and IL-22BPi3). Genotyping was extended to a Europe-wide case-control dataset and yielded high significance in the full dataset ( = 3.17 × 10). Importantly, logistic regression analyses conditioning on the main known MS-associated SNP at this locus, rs17066096, revealed that this association was independent from the primary association signal in the full case-control dataset. In silico analysis predicted both disruption of the alpha helix of the H-region of the SP and decreased hydrophobicity of this region, ultimately affecting the SP cleavage site. We tested the effect of the p.Leu16Pro variant on the secretion of IL-22BPi1, IL-22BPi2 and IL-22BPi3 and observed that the Pro16 risk allele significantly lowers secretion levels of each of the isoforms to around 50%-60% in comparison to the Leu16 reference allele. Thus, our study suggests that genetically coded decreased levels of IL-22BP isoforms are associated with augmented risk for MS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cells9010175DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7017210PMC
January 2020

Longitudinal optic neuritis-unrelated visual evoked potential changes in NMO spectrum disorders.

Neurology 2020 01 3;94(4):e407-e418. Epub 2019 Dec 3.

From the Department of Neurology, Medical Faculty (M.R., J. Harmel, J.G., H.-P.H., O.A., P.A.), and Department of Neurology, Center for Neurology and Neuropsychiatry, LVR-Klinikum (M.R.), Heinrich Heine University Düsseldorf; NeuroCure Clinical Research Center and Experimental and Clinical Research Center (H.Z., A.U.B., F.P.), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, and Max Delbrueck Center for Molecular Medicine, Germany; Department of Neurology (A.U.B.), University of California Irvine; Department of Neurology (A.H., M.B.), University of Würzburg; Department of Neurology (M.B.), Caritas Hospital, Bad Mergentheim; Clinical Neuroimmunology and Neurochemistry (M.W.H.), Department of Neurology (C.T.), Hannover Medical School; Department of Neurology (C.S., I.A., I.K., K.H.), St. Josef Hospital, Ruhr University Bochum, Germany; Department of Neurology (I.A.), Sechenov First Moscow State Medical University, Moscow, Russia; Marianne-Strauß-Klinik (I.K.), Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke, Berg; Institute of Clinical Neuroimmunology (J. Halva, T.K., H.P.), University Hospital, Ludwig-Maximilians University, Munich; Molecular Neuroimmunology Group, Department of Neurology (S.J., B.W.), University of Heidelberg, Germany; Department of Neurology (P.R.), Medical University of Vienna, Austria; Institute of Neuropathology (M.S.W.) and Department of Neurology (M.S.W., H.P., P.K.), University Medical Center Göttingen; Department of Neurology (L.R., C.G.), Jena University Hospital; Neuroimmunological Section, Department of Neurology (N.R., U.Z.), University of Rostock; Department of Neurology (M.D., L.K.), University of Münster; Department of Neurology and Institute of Neuroimmunology and MS (K.Y., J.-P.S.), University Medical Center Hamburg-Eppendorf; Department of Neurology (M.K., P.K.), Nordwest-Hospital Sanderbusch, Sande; Department of Neurology (W.M.), Helios Hanseklinikum Stralsund; Department of Neurology (F.L., H.T.), University of Ulm, Germany; and Faculty of Medicine and Health Sciences (A.K.), Macquarie University, Sydney, New South Wales, Australia.

Objective: To investigate if patients with neuromyelitis optica spectrum disorder (NMOSD) develop subclinical visual pathway impairment independent of acute attacks.

Methods: A total of 548 longitudinally assessed full-field visual evoked potentials (VEP) of 167 patients with NMOSD from 16 centers were retrospectively evaluated for changes of P100 latencies and P100-N140 amplitudes. Rates of change in latencies (RCL) and amplitudes (RCA) over time were analyzed for each individual eye using linear regression and compared using generalized estimating equation models.

Results: The rates of change in the absence of optic neuritis (ON) for minimal VEP intervals of ≥3 months between baseline and last follow-up were +1.951 ms/y (n = 101 eyes; SD = 6.274; = 0.012) for the P100 latencies and -2.149 µV/y (n = 64 eyes; SD = 5.013; = 0.005) for the P100-N140 amplitudes. For minimal VEP intervals of ≥12 months, the RCL was +1.768 ms/y (n = 59 eyes; SD = 4.558; = 0.024) and the RCA was -0.527 µV/y (n = 44 eyes; SD = 2.123; = 0.111). The history of a previous ON >6 months before baseline VEP had no influence on RCL and RCA. ONs during the observational period led to mean RCL and RCA of +11.689 ms/y (n = 16 eyes; SD = 17.593; = 0.003) and -1.238 µV/y (n = 11 eyes; SD = 3.708; = 0.308), respectively.

Conclusion: This first longitudinal VEP study of patients with NMOSD provides evidence of progressive VEP latency delay occurring independently of acute ON. Prospective longitudinal studies are needed to corroborate these findings and help to interpret the clinical relevance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000008684DOI Listing
January 2020

Human Brain Endothelial CXCR2 is Inflammation-Inducible and Mediates CXCL5- and CXCL8-Triggered Paraendothelial Barrier Breakdown.

Int J Mol Sci 2019 01 30;20(3). Epub 2019 Jan 30.

Department of Neurology, University of Würzburg, 97080 Würzburg, Germany.

Chemokines (C-X-C) motif ligand (CXCL) 5 and 8 are overexpressed in patients with multiple sclerosis, where CXCL5 serum levels were shown to correlate with blood-brain barrier dysfunction as evidenced by gadolinium-enhanced magnetic resonance imaging. Here, we studied the potential role of CXCL5/CXCL8 receptor 2 (CXCR2) as a regulator of paraendothelial brain barrier function, using the well-characterized human cerebral microvascular endothelial cell line hCMEC/D3. Low basal CXCR2 mRNA and protein expression levels in hCMEC/D3 were found to strongly increase under inflammatory conditions. Correspondingly, immunohistochemistry of brain biopsies from two patients with active multiple sclerosis revealed upregulation of endothelial CXCR2 compared to healthy control tissue. Recombinant CXCL5 or CXCL8 rapidly and transiently activated Akt/protein kinase B in hCMEC/D3. This was followed by a redistribution of tight junction-associated protein zonula occludens-1 (ZO-1) and by the formation of actin stress fibers. Functionally, these morphological changes corresponded to a decrease of paracellular barrier function, as measured by a real-time electrical impedance-sensing system. Importantly, preincubation with the selective CXCR2 antagonist SB332235 partially prevented chemokine-induced disturbance of both tight junction morphology and function. We conclude that human brain endothelial CXCR2 may contribute to blood-brain barrier disturbance under inflammatory conditions with increased CXCL5 and CXCL8 expression, where CXCR2 may also represent a novel pharmacological target for blood-brain barrier stabilization.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms20030602DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387364PMC
January 2019

Novel insights into neuroinflammation: bacterial lipopolysaccharide, tumor necrosis factor α, and Ureaplasma species differentially modulate atypical chemokine receptor 3 responses in human brain microvascular endothelial cells.

J Neuroinflammation 2018 May 23;15(1):156. Epub 2018 May 23.

University Children's Hospital, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany.

Background: Atypical chemokine receptor 3 (ACKR3, synonym CXCR7) is increasingly considered relevant in neuroinflammatory conditions, in which its upregulation contributes to compromised endothelial barrier function and may ultimately allow inflammatory brain injury. While an impact of ACKR3 has been recognized in several neurological autoimmune diseases, neuroinflammation may also result from infectious agents, including Ureaplasma species (spp.). Although commonly regarded as commensals of the adult urogenital tract, Ureaplasma spp. may cause invasive infections in immunocompromised adults as well as in neonates and appear to be relevant pathogens in neonatal meningitis. Nonetheless, clinical and in vitro data on Ureaplasma-induced inflammation are scarce.

Methods: We established a cell culture model of Ureaplasma meningitis, aiming to analyze ACKR3 variances as a possible pathomechanism in Ureaplasma-associated neuroinflammation. Non-immortalized human brain microvascular endothelial cells (HBMEC) were exposed to bacterial lipopolysaccharide (LPS) or tumor necrosis factor-α (TNF-α), and native as well as LPS-primed HBMEC were cultured with Ureaplasma urealyticum serovar 8 (Uu8) and U. parvum serovar 3 (Up3). ACKR3 responses were assessed via qRT-PCR, RNA sequencing, flow cytometry, and immunocytochemistry.

Results: LPS, TNF-α, and Ureaplasma spp. influenced ACKR3 expression in HBMEC. LPS and TNF-α significantly induced ACKR3 mRNA expression (p < 0.001, vs. control), whereas Ureaplasma spp. enhanced ACKR3 protein expression in HBMEC (p < 0.01, vs. broth control). Co-stimulation with LPS and either Ureaplasma isolate intensified ACKR3 responses (p < 0.05, vs. LPS). Furthermore, stimulation wielded a differential influence on the receptor's ligands.

Conclusions: We introduce an in vitro model of Ureaplasma meningitis. We are able to demonstrate a pro-inflammatory capacity of Ureaplasma spp. in native and, even more so, in LPS-primed HBMEC, underlining their clinical relevance particularly in a setting of co-infection. Furthermore, our data may indicate a novel role for ACKR3, with an impact not limited to auto-inflammatory diseases, but extending to infection-related neuroinflammation as well. AKCR3-induced blood-brain barrier breakdown might constitute a potential common pathomechanism.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12974-018-1170-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5966865PMC
May 2018

Altered motor plasticity in an acute relapse of multiple sclerosis.

Eur J Neurosci 2018 02 22;47(3):251-257. Epub 2018 Jan 22.

Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany.

In relapsing-remitting MS (RRMS), the symptoms of a clinical relapse subside over time. Neuroplasticity is believed to play an important compensatory role. In this study, we assessed excitability-decreasing plasticity during an acute relapse of MS and 12 weeks afterwards. Motor plasticity was examined in 19 patients with clinically isolated syndrome or RRMS during a steroid-treated relapse (t1) and 12 weeks afterwards (t2) using paired-associative stimulation (PAS10). This method combines repetitive electric nerve stimulation with transcranial magnetic stimulation of the contralateral motor cortex to model long-term synaptic depression in the human cortex. Additionally, 19 age-matched healthy controls were assessed. Motor-evoked potentials of the abductor pollicis brevis muscle were recorded before and after intervention. Clinical disability was assessed by the multiple sclerosis functional composite and the subscore of the nine-hole peg test taken as a measure of hand function. The effect of PAS10 was significantly different between controls and patients; at t1, but not at t2, baseline-normalized postinterventional amplitudes were significantly higher in patients (106 [IQR 98-137] % post10-15 and 111 [IQR 88-133] % post20-25) compared to controls (92 [IQR 85-111] % and 90 [IQR 75-102] %). Additional exploratory analysis indicated a potentially excitability-enhancing effect of PAS10 in patients as opposed to controls. Significant clinical improvement between t1 and t2 was not correlated with PAS10 effects. Our results indicate an alteration of PAS10-induced synaptic plasticity during relapse, presumably reflecting a polarity shift due to metaplastic processes within the motor cortex. Further studies will need to elucidate the functional significance of such changes for the clinical course of MS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/ejn.13818DOI Listing
February 2018

Pathogenic inflammation in the CNS of mice carrying human PLP1 mutations.

Hum Mol Genet 2016 11;25(21):4686-4702

Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany.

Progressive forms of multiple sclerosis lead to chronic disability, substantial decline in quality of life and reduced longevity. It is often suggested that they occur independently of inflammation. Here we investigated the disease progression in mouse models carrying PLP1 point mutations previously found in patients displaying clinical features of multiple sclerosis. These mouse models show loss-of-function of PLP1 associated with neuroinflammation; the latter leading to clinically relevant axonal degeneration, neuronal loss and brain atrophy as demonstrated by inactivation of the recombination activating gene 1. Moreover, these pathological hallmarks were substantially amplified when we attenuated immune regulation by inactivation of the programmed cell death-1 gene. Our observations support the view that primary oligodendroglial abnormalities can evoke pathogenically relevant neuroinflammation that drives neurodegeneration, as observed in some forms of multiple sclerosis but also in other, genetically-mediated neurodegenerative disorders of the human nervous system. As many potent immunomodulatory drugs have emerged during the last years, it is tempting to consider immunomodulation as a treatment option not only for multiple sclerosis, but also for so far non-treatable, genetically-mediated disorders of the nervous system accompanied by pathogenic neuroinflammation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddw296DOI Listing
November 2016

MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 3: Brainstem involvement - frequency, presentation and outcome.

J Neuroinflammation 2016 11 1;13(1):281. Epub 2016 Nov 1.

Molecular Neuroimmunology Group, Department of Neurology, University Hospital Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany.

Background: Myelin oligodendrocyte glycoprotein antibodies (MOG-IgG) are present in a subset of aquaporin-4 (AQP4)-IgG-negative patients with optic neuritis (ON) and/or myelitis. Little is known so far about brainstem involvement in MOG-IgG-positive patients.

Objective: To investigate the frequency, clinical and paraclinical features, course, outcome, and prognostic implications of brainstem involvement in MOG-IgG-positive ON and/or myelitis.

Methods: Retrospective case study.

Results: Among 50 patients with MOG-IgG-positive ON and/or myelitis, 15 (30 %) with a history of brainstem encephalitis were identified. All were negative for AQP4-IgG. Symptoms included respiratory insufficiency, intractable nausea and vomiting (INV), dysarthria, dysphagia, impaired cough reflex, oculomotor nerve palsy and diplopia, nystagmus, internuclear ophthalmoplegia (INO), facial nerve paresis, trigeminal hypesthesia/dysesthesia, vertigo, hearing loss, balance difficulties, and gait and limb ataxia; brainstem involvement was asymptomatic in three cases. Brainstem inflammation was already present at or very shortly after disease onset in 7/15 (47 %) patients. 16/21 (76.2 %) brainstem attacks were accompanied by acute myelitis and/or ON. Lesions were located in the pons (11/13), medulla oblongata (8/14), mesencephalon (cerebral peduncles; 2/14), and cerebellar peduncles (5/14), were adjacent to the fourth ventricle in 2/12, and periaqueductal in 1/12; some had concomitant diencephalic (2/13) or cerebellar lesions (1/14). MRI or laboratory signs of blood-brain barrier damage were present in 5/12. Cerebrospinal fluid pleocytosis was found in 11/14 cases, with neutrophils in 7/11 (3-34 % of all CSF white blood cells), and oligoclonal bands in 4/14. Attacks were preceded by acute infection or vaccination in 5/15 (33.3 %). A history of teratoma was noted in one case. The disease followed a relapsing course in 13/15 (87 %); the brainstem was involved more than once in 6. Immunosuppression was not always effective in preventing relapses. Interferon-beta was followed by new attacks in two patients. While one patient died from central hypoventilation, partial or complete recovery was achieved in the remainder following treatment with high-dose steroids and/or plasma exchange. Brainstem involvement was associated with a more aggressive general disease course (higher relapse rate, more myelitis attacks, more frequently supratentorial brain lesions, worse EDSS at last follow-up).

Conclusions: Brainstem involvement is present in around one third of MOG-IgG-positive patients with ON and/or myelitis. Clinical manifestations are diverse and may include symptoms typically seen in AQP4-IgG-positive neuromyelitis optica, such as INV and respiratory insufficiency, or in multiple sclerosis, such as INO. As MOG-IgG-positive brainstem encephalitis may take a serious or even fatal course, particular attention should be paid to signs or symptoms of additional brainstem involvement in patients presenting with MOG-IgG-positive ON and/or myelitis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12974-016-0719-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5088671PMC
November 2016

MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 4: Afferent visual system damage after optic neuritis in MOG-IgG-seropositive versus AQP4-IgG-seropositive patients.

J Neuroinflammation 2016 11 1;13(1):282. Epub 2016 Nov 1.

NeuroCure Clinical Research Center (NCRC), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.

Background: Antibodies against myelin oligodendrocyte glycoprotein (MOG-IgG) have been reported in patients with aquaporin-4 antibody (AQP4-IgG)-negative neuromyelitis optica spectrum disorders (NMOSD). The objective of this study was to describe optic neuritis (ON)-induced neuro-axonal damage in the retina of MOG-IgG-positive patients in comparison with AQP4-IgG-positive NMOSD patients.

Methods: Afferent visual system damage following ON was bilaterally assessed in 16 MOG-IgG-positive patients with a history of ON and compared with that in 16 AQP4-IgG-positive NMOSD patients. In addition, 16 healthy controls matched for age, sex, and disease duration were analyzed. Study data included ON history, retinal optical coherence tomography, visual acuity, and visual evoked potentials.

Results: Eight MOG-IgG-positive patients had a previous diagnosis of AQP4-IgG-negative NMOSD with ON and myelitis, and eight of (mainly recurrent) ON. Twenty-nine of the 32 eyes of the MOG-IgG-positive patients had been affected by at least one episode of ON. Peripapillary retinal nerve fiber layer thickness (pRNFL) and ganglion cell and inner plexiform layer volume (GCIP) were significantly reduced in ON eyes of MOG-IgG-positive patients (pRNFL = 59 ± 23 μm; GCIP = 1.50 ± 0.34 mm) compared with healthy controls (pRNFL = 99 ± 6 μm, p < 0.001; GCIP = 1.97 ± 0.11 mm, p < 0.001). Visual acuity was impaired in eyes after ON in MOG-IgG-positive patients (0.35 ± 0.88 logMAR). There were no significant differences in any structural or functional visual parameters between MOG-IgG-positive and AQP4-IgG-positive patients (pRNFL: 59 ± 21 μm; GCIP: 1.41 ± 0.27 mm; Visual acuity = 0.72 ± 1.09 logMAR). Importantly, MOG-IgG-positive patients had a significantly higher annual ON relapse rate than AQP4-IgG-positive patients (median 0.69 vs. 0.29 attacks/year, p = 0.004), meaning that on average a single ON episode caused less damage in MOG-IgG-positive than in AQP4-IgG-positive patients. pRNFL and GCIP loss correlated with the number of ON episodes in MOG-IgG-positive patients (p < 0.001), but not in AQP4-IgG-positive patients.

Conclusions: Retinal neuro-axonal damage and visual impairment after ON in MOG-IgG-positive patients are as severe as in AQP4-IgG-positive NMOSD patients. In MOG-IgG-positive patients, damage accrual may be driven by higher relapse rates, whereas AQP4-IgG-positive patients showed fewer but more severe episodes of ON. Given the marked damage in some of our MOG-IgG-positive patients, early diagnosis and timely initiation and close monitoring of immunosuppressive therapy are important.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12974-016-0720-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5088645PMC
November 2016

Validation of a multiplexing technique to determine the intrathecal, polyspecific antiviral immune response in multiple sclerosis.

Expert Rev Mol Diagn 2016 12 31;16(12):1353-1356. Epub 2016 Oct 31.

a Department of Neurology , University of Ulm , Ulm , Germany.

Background: Beside the determination of oligoclonal bands (OCBs) as a diagnostic biomarker in multiple sclerosis (MS), the presence of an intrathecal production of antibodies against the neurotropic viruses measles (M), rubella (R) and Varicella-Zoster (Z), the so called MRZ reaction (MRZR) is an even more specific diagnostic biomarker in MS.

Methods: We compared and validated the determination of the MRZR in 97 cerebrospinal fluid (CSF) and serum sample pairs of a bead-based multiplexing technique and a classical enzyme-linked immunosorbent assay (ELISA).

Results: Conformity of 94% (M), 94% (R), 94% (Z), 96% (H) and 97% for the interpretation of the MRZR was obtained.

Conclusion: Based on our findings of high conformity between the multiplex technique and classical ELISA, as well as the time and cost savings multiplexing allows, we conclude that the multiplexing technique is applicable as a diagnostic tool for the determination of the MRZR.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/14737159.2016.1249468DOI Listing
December 2016

MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: Epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome.

J Neuroinflammation 2016 09 27;13(1):280. Epub 2016 Sep 27.

Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany.

Background: A subset of patients with neuromyelitis optica spectrum disorders (NMOSD) has been shown to be seropositive for myelin oligodendrocyte glycoprotein antibodies (MOG-IgG).

Objective: To describe the epidemiological, clinical, radiological, cerebrospinal fluid (CSF), and electrophysiological features of a large cohort of MOG-IgG-positive patients with optic neuritis (ON) and/or myelitis (n = 50) as well as attack and long-term treatment outcomes.

Methods: Retrospective multicenter study.

Results: The sex ratio was 1:2.8 (m:f). Median age at onset was 31 years (range 6-70). The disease followed a multiphasic course in 80 % (median time-to-first-relapse 5 months; annualized relapse rate 0.92) and resulted in significant disability in 40 % (mean follow-up 75 ± 46.5 months), with severe visual impairment or functional blindness (36 %) and markedly impaired ambulation due to paresis or ataxia (25 %) as the most common long-term sequelae. Functional blindess in one or both eyes was noted during at least one ON attack in around 70 %. Perioptic enhancement was present in several patients. Besides acute tetra-/paraparesis, dysesthesia and pain were common in acute myelitis (70 %). Longitudinally extensive spinal cord lesions were frequent, but short lesions occurred at least once in 44 %. Fourty-one percent had a history of simultaneous ON and myelitis. Clinical or radiological involvement of the brain, brainstem, or cerebellum was present in 50 %; extra-opticospinal symptoms included intractable nausea and vomiting and respiratory insufficiency (fatal in one). CSF pleocytosis (partly neutrophilic) was present in 70 %, oligoclonal bands in only 13 %, and blood-CSF-barrier dysfunction in 32 %. Intravenous methylprednisolone (IVMP) and long-term immunosuppression were often effective; however, treatment failure leading to rapid accumulation of disability was noted in many patients as well as flare-ups after steroid withdrawal. Full recovery was achieved by plasma exchange in some cases, including after IVMP failure. Breakthrough attacks under azathioprine were linked to the drug-specific latency period and a lack of cotreatment with oral steroids. Methotrexate was effective in 5/6 patients. Interferon-beta was associated with ongoing or increasing disease activity. Rituximab and ofatumumab were effective in some patients. However, treatment with rituximab was followed by early relapses in several cases; end-of-dose relapses occurred 9-12 months after the first infusion. Coexisting autoimmunity was rare (9 %). Wingerchuk's 2006 and 2015 criteria for NMO(SD) and Barkhof and McDonald criteria for multiple sclerosis (MS) were met by 28 %, 32 %, 15 %, 33 %, respectively; MS had been suspected in 36 %. Disease onset or relapses were preceded by infection, vaccination, or pregnancy/delivery in several cases.

Conclusion: Our findings from a predominantly Caucasian cohort strongly argue against the concept of MOG-IgG denoting a mild and usually monophasic variant of NMOSD. The predominantly relapsing and often severe disease course and the short median time to second attack support the use of prophylactic long-term treatments in patients with MOG-IgG-positive ON and/or myelitis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12974-016-0718-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5086042PMC
September 2016

MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 1: Frequency, syndrome specificity, influence of disease activity, long-term course, association with AQP4-IgG, and origin.

J Neuroinflammation 2016 09 26;13(1):279. Epub 2016 Sep 26.

Clinical Department of Neurology, Medical University Innsbruck, Innsbruck, Austria.

Background: Antibodies to myelin oligodendrocyte glycoprotein (MOG-IgG) have been suggested to play a role in a subset of patients with neuromyelitis optica and related disorders.

Objective: To assess (i) the frequency of MOG-IgG in a large and predominantly Caucasian cohort of patients with optic neuritis (ON) and/or myelitis; (ii) the frequency of MOG-IgG among AQP4-IgG-positive patients and vice versa; (iii) the origin and frequency of MOG-IgG in the cerebrospinal fluid (CSF); (iv) the presence of MOG-IgG at disease onset; and (v) the influence of disease activity and treatment status on MOG-IgG titers.

Methods: 614 serum samples from patients with ON and/or myelitis and from controls, including 92 follow-up samples from 55 subjects, and 18 CSF samples were tested for MOG-IgG using a live cell-based assay (CBA) employing full-length human MOG-transfected HEK293A cells.

Results: MOG-IgG was detected in 95 sera from 50 patients with ON and/or myelitis, including 22/54 (40.7 %) patients with a history of both ON and myelitis, 22/103 (21.4 %) with a history of ON but no myelitis and 6/45 (13.3 %) with a history of longitudinally extensive transverse myelitis but no ON, and in 1 control patient with encephalitis and a connective tissue disorder, all of whom were negative for AQP4-IgG. MOG-IgG was absent in 221 further controls, including 83 patients with AQP4-IgG-seropositive neuromyelitis optica spectrum disorders and 85 with multiple sclerosis (MS). MOG-IgG was found in 12/18 (67 %) CSF samples from MOG-IgG-seropositive patients; the MOG-IgG-specific antibody index was negative in all cases, indicating a predominantly peripheral origin of CSF MOG-IgG. Serum and CSF MOG-IgG belonged to the complement-activating IgG1 subclass. MOG-IgG was present already at disease onset. The antibodies remained detectable in 40/45 (89 %) follow-up samples obtained over a median period of 16.5 months (range 0-123). Serum titers were higher during attacks than during remission (p < 0.0001), highest during attacks of simultaneous myelitis and ON, lowest during acute isolated ON, and declined following treatment.

Conclusions: To date, this is the largest cohort studied for IgG to human full-length MOG by means of an up-to-date CBA. MOG-IgG is present in a substantial subset of patients with ON and/or myelitis, but not in classical MS. Co-existence of MOG-IgG and AQP4-IgG is highly uncommon. CSF MOG-IgG is of extrathecal origin. Serum MOG-IgG is present already at disease onset and remains detectable in the long-term course. Serum titers depend on disease activity and treatment status.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12974-016-0717-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5084340PMC
September 2016

Importance of cerebrospinal fluid analysis in the era of McDonald 2010 criteria: a German-Austrian retrospective multicenter study in patients with a clinically isolated syndrome.

J Neurol 2016 Dec 11;263(12):2499-2504. Epub 2016 Oct 11.

Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany.

The majority of patients presenting with a first clinical symptom suggestive of multiple sclerosis (MS) do not fulfill the MRI criteria for dissemination in space and time according to the 2010 revision of the McDonald diagnostic criteria for MS and are thus classified as clinically isolated syndrome (CIS). To re-evaluate the utility of cerebrospinal fluid (CSF) analysis in the context of the revised McDonald criteria from 2010, we conducted a retrospective multicenter study aimed at determining the prevalence and predictive value of oligoclonal IgG bands (OCBs) in patients with CIS. Patients were recruited from ten specialized MS centers in Germany and Austria. We collected data from 406 patients; at disease onset, 44/406 (11 %) fulfilled the McDonald 2010 criteria for MS. Intrathecal IgG OCBs were detected in 310/362 (86 %) of CIS patients. Those patients were twice as likely to convert to MS according to McDonald 2010 criteria as OCB-negative individuals (hazard ratio = 2.1, p = 0.0014) and in a shorter time period of 25 months (95 % CI 21-34) compared to 47 months in OCB-negative individuals (95 % CI 36-85). In patients without brain lesions at first attack and presence of intrathecal OCBs (30/44), conversion rate to MS was 60 % (18/30), whereas it was only 21 % (3/14) in those without OCBs. Our data confirm that in patients with CIS the risk of conversion to MS substantially increases if OCBs are present at onset. CSF analysis definitely helps to evaluate the prognosis in patients who do not have MS according to the revised McDonald criteria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00415-016-8302-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5110610PMC
December 2016

Auto-antibodies to contactin-associated protein 1 (Caspr) in two patients with painful inflammatory neuropathy.

Brain 2016 Oct 29;139(Pt 10):2617-2630. Epub 2016 Jul 29.

1 Department of Neurology, University of Würzburg, Germany.

Auto-antibodies against the paranodal proteins neurofascin-155 and contactin-1 have recently been described in patients with chronic inflammatory demyelinating polyradiculoneuropathy and are associated with a distinct clinical phenotype and response to treatment. Contactin-associated protein 1 (Caspr, encoded by CNTNAP1) is a paranodal protein that is attached to neurofascin-155 and contactin-1 (CNTN1) but has not yet been identified as a sole antigen in patients with inflammatory neuropathies. In the present study, we screened a cohort of 35 patients with chronic inflammatory demyelinating polyradiculoneuropathy (age range 20-80, 10 female, 25 male) and 22 patients with Guillain-Barré syndrome (age range 17-86, eight female, 14 male) for autoantibodies against paranodal antigens. We identified two patients, one with chronic inflammatory demyelinating polyradiculoneuropathy and one with Guillain-Barré syndrome, with autoantibodies against Caspr by binding assays using Caspr transfected human embryonic kidney cells and murine teased fibres. IgG3 was the predominant autoantibody subclass in the patient with Guillain-Barré syndrome, IgG4 was predominant in the patient with chronic inflammatory demyelinating polyradiculoneuropathy. Accordingly, complement deposition after binding to HEK293 cells was detectable in the patient with IgG3 autoantibodies only, not in the patient with IgG4. Severe disruption of the paranodal and nodal architecture was detectable in teased fibres of the sural nerve biopsy and in dermal myelinated fibres, supporting the notion of the paranodes being the site of pathology. Deposition of IgG at the paranodes was detected in teased fibre preparations of the sural nerve, further supporting the pathogenicity of anti-Caspr autoantibodies. Pain was one of the predominant findings in both patients, possibly reflected by binding of patients' IgG to TRPV1 immunoreactive dorsal root ganglia neurons. Our results demonstrate that the paranodal protein Caspr constitutes a new antigen that leads to autoantibody generation as part of the novel entity of neuropathies associated with autoantibodies against paranodal proteins.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/aww189DOI Listing
October 2016

Analysis of Plasminogen Genetic Variants in Multiple Sclerosis Patients.

G3 (Bethesda) 2016 07 7;6(7):2073-9. Epub 2016 Jul 7.

Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada

Multiple sclerosis (MS) is a prevalent neurological disease of complex etiology. Here, we describe the characterization of a multi-incident MS family that nominated a rare missense variant (p.G420D) in plasminogen (PLG) as a putative genetic risk factor for MS. Genotyping of PLG p.G420D (rs139071351) in 2160 MS patients, and 886 controls from Canada, identified 10 additional probands, two sporadic patients and one control with the variant. Segregation in families harboring the rs139071351 variant, identified p.G420D in 26 out of 30 family members diagnosed with MS, 14 unaffected parents, and 12 out of 30 family members not diagnosed with disease. Despite considerably reduced penetrance, linkage analysis supports cosegregation of PLG p.G420D and disease. Genotyping of PLG p.G420D in 14446 patients, and 8797 controls from Canada, France, Spain, Germany, Belgium, and Austria failed to identify significant association with disease (P = 0.117), despite an overall higher prevalence in patients (OR = 1.32; 95% CI = 0.93-1.87). To assess whether additional rare variants have an effect on MS risk, we sequenced PLG in 293 probands, and genotyped all rare variants in cases and controls. This analysis identified nine rare missense variants, and although three of them were exclusively observed in MS patients, segregation does not support pathogenicity. PLG is a plausible biological candidate for MS owing to its involvement in immune system response, blood-brain barrier permeability, and myelin degradation. Moreover, components of its activation cascade have been shown to present increased activity or expression in MS patients compared to controls; further studies are needed to clarify whether PLG is involved in MS susceptibility.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1534/g3.116.030841DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4938660PMC
July 2016

Malignancies after mitoxantrone for multiple sclerosis: A retrospective cohort study.

Neurology 2016 Jun 11;86(23):2203-7. Epub 2016 May 11.

From the Department of Neurology (M.B., L.S., K.V.T.) and the Comprehensive Cancer Center Mainfranken (U.M.), University of Würzburg, Germany.

Objective: To assess the therapy-related risk of malignancies in mitoxantrone-treated patients with multiple sclerosis.

Methods: This retrospective observational cohort study included all mitoxantrone-treated patients with multiple sclerosis seen at our department between 1994 and 2007. We collected follow-up information on medically confirmed malignancies, life status, and cause of death, as of 2010. Malignancy rates were compared to the German national cancer registry matched for sex, age, and year of occurrence.

Results: Follow-up was completed in 676 of 677 identified patients. Median follow-up time was 8.7 years (interquartile range 6.8-11.2), corresponding to 6,220 person-years. Median cumulative mitoxantrone dose was 79.0 mg/m(2) (interquartile range 50.8-102.4). Thirty-seven patients (5.5%) were diagnosed with a malignancy after mitoxantrone initiation, revealing a standardized incidence ratio of 1.50 (95% confidence interval [CI] 1.05-2.08). Entities included breast cancer (n = 9), colorectal cancer (n = 7), acute myeloid leukemia (n = 4, 0.6%), and others (each entity n = 1 or 2). The standardized incidence ratio of colorectal cancer was 2.98 (95% CI 1.20-6.14) and of acute myeloid leukemia 10.44 (95% CI 3.39-24.36). It was not increased for other entities including breast cancer. Multivariate Cox regression identified higher age at treatment initiation but neither cumulative mitoxantrone dose (>75 vs ≤75 mg/m(2)) nor treatment with other immunosuppressive drugs or sex as a risk factor. Fifty-five patients had died, among them 12 of a malignancy and 43 reportedly of other causes.

Conclusions: While the overall incidence of malignancies was only mildly increased, the risk of leukemia and colorectal cancer was heightened. If confirmed, posttherapy colonoscopy could become advisable.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000002745DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4898319PMC
June 2016

Detection of intrathecal immunoglobulin G synthesis by capillary isoelectric focusing immunoassay in oligoclonal band negative multiple sclerosis.

J Neurol 2016 May 19;263(5):954-960. Epub 2016 Mar 19.

Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany.

Oligoclonal immunoglobulin G bands (OCBs) restricted to the cerebrospinal fluid indicate intrathecal inflammation. Using isoelectric focusing and immunoblotting, they are detected in about 95 % of patients with clinically definite multiple sclerosis (MS). To elucidate whether in the remaining 5 % OCBs are truly absent or alternatively missed due to insufficient sensitivity of the routine measurement, we employed a new, highly sensitive nanoscale method for OCB detection. Capillary isoelectric focusing followed by immunological detection served to analyze OCBs in 33 well-characterized OCB-negative and 10 OCB-positive MS patients as well as in 100 OCB-negative control patients with non-inflammatory neurological diseases and 30 OCB-positive control patients with inflammatory neurological diseases. We detected intrathecal immunoglobulin G production in 10 out of 33 MS patients (30 %), initially diagnosed as being OCB-negative, and in all 10 OCB-positive MS patients, but in only 3 out of 100 non-inflammatory neurological controls (3 %) and in 29 of 30 inflammatory neurological controls (97 %). At least about one-third of MS patients without intrathecal immunoglobulin G synthesis according to standard methods are OCB-positive. Advanced methods for OCB detection may increase the analytical sensitivity for detecting OCB in patients with MS who are OCB-negative according to current routine methods.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00415-016-8094-3DOI Listing
May 2016

Genome-wide significant association with seven novel multiple sclerosis risk loci.

J Med Genet 2015 Dec 16;52(12):848-55. Epub 2015 Oct 16.

Platform for Genome Analytics, Institutes of Neurogenetics & Integrative and Experimental Genomics, University of Lübeck, Lübeck, Germany Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany Department of Medicine, School of Public Health, Imperial College London, London, UK.

Objective: A recent large-scale study in multiple sclerosis (MS) using the ImmunoChip platform reported on 11 loci that showed suggestive genetic association with MS. Additional data in sufficiently sized and independent data sets are needed to assess whether these loci represent genuine MS risk factors.

Methods: The lead SNPs of all 11 loci were genotyped in 10 796 MS cases and 10 793 controls from Germany, Spain, France, the Netherlands, Austria and Russia, that were independent from the previously reported cohorts. Association analyses were performed using logistic regression based on an additive model. Summary effect size estimates were calculated using fixed-effect meta-analysis.

Results: Seven of the 11 tested SNPs showed significant association with MS susceptibility in the 21 589 individuals analysed here. Meta-analysis across our and previously published MS case-control data (total sample size n=101 683) revealed novel genome-wide significant association with MS susceptibility (p<5×10(-8)) for all seven variants. This included SNPs in or near LOC100506457 (rs1534422, p=4.03×10(-12)), CD28 (rs6435203, p=1.35×10(-9)), LPP (rs4686953, p=3.35×10(-8)), ETS1 (rs3809006, p=7.74×10(-9)), DLEU1 (rs806349, p=8.14×10(-12)), LPIN3 (rs6072343, p=7.16×10(-12)) and IFNGR2 (rs9808753, p=4.40×10(-10)). Cis expression quantitative locus effects were observed in silico for rs6435203 on CD28 and for rs9808753 on several immunologically relevant genes in the IFNGR2 locus.

Conclusions: This study adds seven loci to the list of genuine MS genetic risk factors and further extends the list of established loci shared across autoimmune diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jmedgenet-2015-103442DOI Listing
December 2015

Analysis of Varicella-Zoster Virus in Temporal Arteries Biopsy Positive and Negative for Giant Cell Arteritis.

JAMA Neurol 2015 Nov;72(11):1281-7

Department of Neurology, University of Colorado School of Medicine, Aurora20Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora.

Importance: Giant cell arteritis (GCA) is the most common systemic vasculitis in elderly individuals. Diagnosis is confirmed by temporal artery (TA) biopsy, although biopsy results are often negative. Despite the use of corticosteroids, disease may progress. Identification of causal agents will improve outcomes. Biopsy-positive GCA is associated with TA infection by varicella-zoster virus (VZV).

Objective: To analyze VZV infection in TAs of patients with clinically suspected GCA whose TAs were histopathologically negative and in normal TAs removed post mortem from age-matched individuals.

Design, Setting, And Participants: A cross-sectional study for VZV antigen was performed from January 2013 to March 2015 using archived, deidentified, formalin-fixed, paraffin-embedded GCA-negative, GCA-positive, and normal TAs (50 sections/TA) collected during the past 30 years. Regions adjacent to those containing VZV were examined by hematoxylin-eosin staining. Immunohistochemistry identified inflammatory cells and cell types around nerve bundles containing VZV. A combination of 17 tertiary referral centers and private practices worldwide contributed archived TAs from individuals older than 50 years.

Main Outcomes And Measures: Presence and distribution of VZV antigen in TAs and histopathological changes in sections adjacent to those containing VZV were confirmed by 2 independent readers.

Results: Varicella-zoster virus antigen was found in 45 of 70 GCA-negative TAs (64%), compared with 11 of 49 normal TAs (22%) (relative risk [RR] = 2.86; 95% CI, 1.75-5.31; P < .001). Extension of our earlier study revealed VZV antigen in 68 of 93 GCA-positive TAs (73%), compared with 11 of 49 normal TAs (22%) (RR = 3.26; 95% CI, 2.03-5.98; P < .001). Compared with normal TAs, VZV antigen was more likely to be present in the adventitia of both GCA-negative TAs (RR = 2.43; 95% CI, 1.82-3.41; P < .001) and GCA-positive TAs (RR = 2.03; 95% CI, 1.52-2.86; P < .001). Varicella-zoster virus antigen was frequently found in perineurial cells expressing claudin-1 around nerve bundles. Of 45 GCA-negative participants whose TAs contained VZV antigen, 1 had histopathological features characteristic of GCA, and 16 (36%) showed adventitial inflammation adjacent to viral antigen; no inflammation was seen in normal TAs.

Conclusions And Relevance: In patients with clinically suspected GCA, prevalence of VZV in their TAs is similar independent of whether biopsy results are negative or positive pathologically. Antiviral treatment may confer additional benefit to patients with biopsy-negative GCA treated with corticosteroids, although the optimal antiviral regimen remains to be determined.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamaneurol.2015.2101DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5110206PMC
November 2015

Fumaric Acid Esters Do Not Reduce Inflammatory NF-κB/p65 Nuclear Translocation, ICAM-1 Expression and T-Cell Adhesiveness of Human Brain Microvascular Endothelial Cells.

Int J Mol Sci 2015 Aug 13;16(8):19086-95. Epub 2015 Aug 13.

Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, Würzburg 97080, Germany.

Dimethyl fumarate (DMF) is approved for disease-modifying treatment of patients with relapsing-remitting multiple sclerosis. Animal experiments suggested that part of its therapeutic effect is due to a reduction of T-cell infiltration of the central nervous system (CNS) by uncertain mechanisms. Here we evaluated whether DMF and its primary metabolite monomethyl fumarate (MMF) modulate pro-inflammatory intracellular signaling and T-cell adhesiveness of nonimmortalized single donor human brain microvascular endothelial cells at low passages. Neither DMF nor MMF at concentrations of 10 or 50 µM blocked the IL-1β-induced nuclear translocation of NF-κB/p65, whereas the higher concentration of DMF inhibited the nuclear entry of p65 in human umbilical vein endothelium cultured in parallel. DMF and MMF also did not alter the IL-1β-stimulated activation of p38 MAPK in brain endothelium. Furthermore, neither DMF nor MMF reduced the basal or IL-1β-inducible expression of ICAM-1. In accordance, both fumaric acid esters did not reduce the adhesion of activated Jurkat T cells to brain endothelium under basal or inflammatory conditions. Therefore, brain endothelial cells probably do not directly mediate a potential blocking effect of fumaric acid esters on the inflammatory infiltration of the CNS by T cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms160819086DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581287PMC
August 2015

Oligoclonal bands predict multiple sclerosis in children with optic neuritis.

Ann Neurol 2015 Jun 11;77(6):1076-82. Epub 2015 May 11.

Department of Neurology, University of Würzburg, Würzburg, Germany.

We retrospectively evaluated predictors of conversion to multiple sclerosis (MS) in 357 children with isolated optic neuritis (ON) as a first demyelinating event who had a median follow-up of 4.0 years. Multiple Cox proportional-hazards regressions revealed abnormal cranial magnet resonance imaging (cMRI; hazard ratio [HR] = 5.94, 95% confidence interval [CI] = 3.39-10.39, p < 0.001), presence of cerebrospinal fluid immunoglobulin G oligoclonal bands (OCB; HR = 3.69, 95% CI = 2.32-5.86, p < 0.001), and age (HR = 1.08 per year of age, 95% CI = 1.02-1.13, p = 0.003) as independent predictors of conversion, whereas sex and laterality (unilateral vs bilateral) had no influence. Combined cMRI and OCB positivity indicated a 26.84-fold higher HR for developing MS compared to double negativity (95% CI = 12.26-58.74, p < 0.001). Accordingly, cerebrospinal fluid analysis may supplement cMRI to determine the risk of MS in children with isolated ON.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.24409DOI Listing
June 2015

Soluble VCAM-1 impairs human brain endothelial barrier integrity via integrin α-4-transduced outside-in signalling.

Acta Neuropathol 2015 May 27;129(5):639-52. Epub 2015 Mar 27.

Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany,

Human brain microvascular endothelial cells forming the blood-brain barrier (BBB) release soluble vascular cell adhesion molecule-1 (sVCAM-1) under inflammatory conditions. Furthermore, sVCAM-1 serum levels in untreated patients with multiple sclerosis (MS) correlate with a breakdown of the BBB as measured by gadolinium-enhanced MRI. To date, it is unknown whether sVCAM-1 itself modulates BBB permeability. Here, we provide evidence that human brain endothelium expresses integrin α-4/β-1, the molecular binding partner of sVCAM-1, and that sVCAM-1 directly impairs BBB function by inducing intracellular signalling events through integrin α-4. Primary human brain microvascular endothelial cells showed low to moderate integrin α-4 and strong β-1 but no definite β-7 expression in vitro and in situ. Increased brain endothelial integrin α-4 expression was observed in active MS lesions in situ and after angiogenic stimulation in vitro. Exposure of cultured primary brain endothelial cells to recombinant sVCAM-1 significantly increased their permeability to the soluble tracer dextran, which was paralleled by formation of actin stress fibres and reduced staining of tight junction-associated molecules. Soluble VCAM-1 was also found to activate Rho GTPase and p38 MAP kinase. Chemical inhibition of these signalling pathways partially prevented sVCAM-1-induced changes of tight junction arrangement. Importantly, natalizumab, a neutralising recombinant monoclonal antibody against integrin α-4 approved for the treatment of patients with relapsing-remitting MS, partially antagonised the barrier-disturbing effect of sVCAM-1. In summary, we newly characterised sVCAM-1 as a compromising factor of brain endothelial barrier function that may be partially blocked by the MS therapeutic natalizumab.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00401-015-1417-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405352PMC
May 2015

NFAT1 deficit and NFAT2 deficit attenuate EAE via different mechanisms.

Eur J Immunol 2015 May 19;45(5):1377-89. Epub 2015 Feb 19.

Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany.

EAE serves as an animal model for multiple sclerosis and is initiated by autoreactive T cells that infiltrate the CNS. Recognition of myelin-associated Ags within the CNS leads to activation of the transcription factor family NFAT. Here, we demonstrate an essential role for NFAT in disease induction, as the combined lack of NFAT1 (NFATc2) and NFAT2 (NFATc1) completely protected mice. Single deficiency of either NFAT1 or NFAT2 ameliorated the course of EAE, and NFAT2 ablation resulted in an obstructed proinflammatory reaction. However, NFAT1 deficit led to an anti-inflammatory response with nonpathogenic Th17 and Th2 cells concurrently secreting IL-17, IL-4, and IL-10. Both IL-4 and IL-10 contributed to disease protection. In Nfat1(-/-) CD4(+) T cells, the expression of anti-inflammatory lymphokines was mediated by NFAT2, thus directly enabling protective IL expression. Consequently, blocking NFAT in toto may be an option for immunosuppressive therapy. More importantly, selective NFAT1 blockade could represent a safe long-term immunomodulatory treatment approach for multiple sclerosis patients, potentially avoiding the adverse effects of global immunosuppression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.201444638DOI Listing
May 2015

Investigation of the KIR4.1 potassium channel as a putative antigen in patients with multiple sclerosis: a comparative study.

Lancet Neurol 2014 Aug 6;13(8):795-806. Epub 2014 Jul 6.

Department of Immunology, Mayo Clinic, Rochester, MN, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA. Electronic address:

Background: Antibodies have been implicated in the pathogenicity of multiple sclerosis by findings of immunoglobulins in patients' CSF and often IgG and complement in lesions, and by a 2012 report that nearly half of patients' serum samples contain IgG specific for a glial potassium-channel, KIR4.1. We aimed to establish the frequency of KIR4.1-binding IgG in serum and CSF of patients with multiple sclerosis, and whether KIR4.1 immunoreactivity is retained or lost in demyelinating lesions.

Methods: Using ELISA with a KIR4.1 peptide, we tested archival serum from 229 population-based and 57 clinic-based patients with multiple sclerosis, 99 healthy controls, and 109 disease controls, and CSF from 25 patients with multiple sclerosis and 22 disease controls. We tested all CSF and serum samples from 50 of the clinic-based patients with multiple sclerosis on cells expressing functional KIR4.1, using cell-based immunofluorescence and immunoprecipitation (solubilised recombinant human KIR4.1). We assessed KIR4.1 immunoreactivity in archival brain samples from 15 patients with histopathologically confirmed multiple sclerosis (22 plaques [eight early active, eight inactive, and six remyelinated], 13 periplaque regions and eight normal-appearing white-matter and grey-matter regions) and from three controls with non-neurological diseases.

Findings: Three of 286 serum samples from patients with multiple sclerosis and two of 208 serum samples from controls showed KIR4.1 reactivity on ELISA; none of the CSF samples from patients or controls showed KIR4.1 reactivity. IgG in none of the 50 serum samples from clinic-based patients immunoprecipitated KIR4.1, but a commercial KIR4.1-specific control IgG did. By immunofluorescence, one of 50 serum samples from patients with multiple sclerosis yielded faint plasmalemmal staining on both KIR4.1-expressing and non-expressing cells; 16 bound faintly to intracellular components. In all cases, IgG binding was quenched by absorption with liver powder or lysates from non-transfected cells. Binding by the KIR4.1-specific control IgG was quenched only by lysates containing KIR4.1. IgG in none of the 25 CSF samples from patients with multiple sclerosis bound to KIR4.1-transfected cells. Glial KIR4.1 immunoreactivity was increased relative to expression in healthy control brain in all active demyelinating lesions, remyelinated lesions, and periplaque white matter regions.

Interpretation: We did not detect KIR4.1-specific IgG in serum or CSF from patients with multiple sclerosis or KIR4.1 loss from glia in multiple sclerosis lesions. Serological testing for KIR4.1-specific IgG is unlikely to aid diagnosis of multiple sclerosis. The target antigen of multiple sclerosis remains elusive.

Funding: The National Institutes of Health, the National Multiple Sclerosis Society, and the Mayo Clinic Robert and Arlene Kogod Center on Aging.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1474-4422(14)70141-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144430PMC
August 2014

Non-invasive assessment of retinal alterations in mouse models of infantile and juvenile neuronal ceroid lipofuscinosis by spectral domain optical coherence tomography.

Acta Neuropathol Commun 2014 May 10;2:54. Epub 2014 May 10.

Department of Neurology, Developmental Neurobiology, University of Wuerzburg, Josef-Schneider-Str, 11, D-97080 Wuerzburg, Germany.

Introduction: The neuronal ceroid lipofuscinoses constitute a group of fatal inherited lysosomal storage diseases that manifest in profound neurodegeneration in the CNS. Visual impairment usually is an early symptom and selective degeneration of retinal neurons has been described in patients suffering from distinct disease subtypes. We have previously demonstrated that palmitoyl protein thioesterase 1 deficient (Ppt1-/-) mice, a model of the infantile disease subtype, exhibit progressive axonal degeneration in the optic nerve and loss of retinal ganglion cells, faithfully reflecting disease severity in the CNS. Here we performed spectral domain optical coherence tomography (OCT) in Ppt1-/- and ceroid lipofuscinosis neuronal 3 deficient (Cln3-/-) mice, which are models of infantile and juvenile neuronal ceroid lipofuscinosis, respectively, in order to establish a non-invasive method to assess retinal alterations and monitor disease severity in vivo.

Results: Blue laser autofluorescence imaging revealed increased accumulation of autofluorescent storage material in the inner retinae of 7-month-old Ppt1-/- and of 16-month-old Cln3-/- mice in comparison with age-matched control littermates. Additionally, optical coherence tomography demonstrated reduced thickness of retinae in knockout mice in comparison with age-matched control littermates. High resolution scans and manual measurements allowed for separation of different retinal composite layers and revealed a thinning of layers in the inner retinae of both mouse models at distinct ages. OCT measurements correlated well with subsequent histological analysis of the same retinae.

Conclusions: These results demonstrate the feasibility of OCT to assess neurodegenerative disease severity in mouse models of neuronal ceroid lipofuscinosis and might have important implications for diagnostic evaluation of disease progression and therapeutic efficacy in patients. Moreover, the non-invasive method allows for longitudinal studies in experimental models, reducing the number of animals used for research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/2051-5960-2-54DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035096PMC
May 2014

Assessment of microRNA-related SNP effects in the 3' untranslated region of the IL22RA2 risk locus in multiple sclerosis.

Neurogenetics 2014 May 18;15(2):129-34. Epub 2014 Mar 18.

Neuropsychiatric Genetics Group, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, Berlin, Germany,

Recent large-scale association studies have identified over 100 MS risk loci. One of these MS risk variants is single-nucleotide polymorphism (SNP) rs17066096, located ~14 kb downstream of IL22RA2. IL22RA2 represents a compelling MS candidate gene due to the role of IL-22 in autoimmunity; however, rs17066096 does not map into any known functional element. We assessed whether rs17066096 or a nearby proxy SNP may exert pathogenic effects by affecting microRNA-to-mRNA binding and thus IL22RA2 expression using comprehensive in silico predictions, in vitro reporter assays, and genotyping experiments in 6,722 individuals. In silico screening identified two predicted microRNA binding sites in the 3'UTR of IL22RA2 (for hsa-miR-2278 and hsa-miR-411-5p) encompassing a SNP (rs28366) in moderate linkage disequilibrium with rs17066096 (r (2) = 0.4). The binding of both microRNAs to the IL22RA2 3'UTR was confirmed in vitro, but their binding affinities were not significantly affected by rs28366. Association analyses revealed significant association of rs17066096 and MS risk in our independent German dataset (odds ratio  = 1.15, P = 3.48 × 10(-4)), but did not indicate rs28366 to be the cause of this signal. While our study provides independent validation of the association between rs17066096 and MS risk, this signal does not appear to be caused by sequence variants affecting microRNA function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10048-014-0396-yDOI Listing
May 2014

Case reports of PML in patients treated for psoriasis.

N Engl J Med 2013 09;369(11):1081

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJMc1307680DOI Listing
September 2013

Polyclonal immunoglobulin G for autoimmune demyelinating nervous system disorders.

Trends Pharmacol Sci 2013 Aug 21;34(8):445-57. Epub 2013 Jun 21.

Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany.

Demyelinating diseases with presumed autoimmune pathogenesis are characterised by direct or indirect immune-mediated damage to myelin sheaths, which normally surround nerve fibres to ensure proper electrical nerve conduction. Parenteral administration of polyclonal IgG purified from multi-donor human plasma pools may beneficially modulate these misguided immune reactions via several mechanisms that are outlined in this review. Convincing therapeutic evidence from controlled trials now exists for certain disorders of the peripheral nervous system, including Guillain-Barré syndrome, chronic inflammatory demyelinating polyradiculoneuropathy, and multifocal motor neuropathy. In addition, there is evidence for potential therapeutic benefits of IgG in patients with chronic inflammatory demyelinating diseases of the central nervous system, including multiple sclerosis and neuromyelitis optica. This review introduces these disorders, briefly summarises the established treatment options, and discusses therapeutic evidence for the use of polyclonal immunoglobulins with a particular emphasis on recent clinical trials and meta-analyses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tips.2013.05.009DOI Listing
August 2013