Publications by authors named "Marzieh Anjomshoa"

9 Publications

  • Page 1 of 1

In silico and in vitro inhibitory potential of an organometallic Cu (II) complex on Leishmania major stages.

Ann Parasitol 2021 ;67(1):45-54

Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.

Leishmaniosis results in a serious complication, principally in the tropical and subtropical areas. Metalcored complexes, like meglumine antimoniate (MA) have proven antileishmanial activity. Similarly, in this research, we investigated the effects of Cu (II) dimethoxy bipyridine (CuDMOBP) against Leishmania major stages in silico and in vitro. Molecular docking analysis was carried out on the complex and a protozoan metacaspase. The complex's antipromastigote and its cytotoxicity towards macrophages were assayed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method to calculate relative Inhibitory Concentration 50% (IC50), Cytotoxic Concentration 50% (CC50), and Selectivity Index (SI). Expression of TNF-α and IL-10 in intracellular amastigotes and induction of apoptosis was also investigated using quantitative real-time PCR. The complex interacted effectively with four amino acid residues including lysine (Lys171), histidine (His193), arginine (Arg44 and Arg243) of the targeted metacaspase. This indicates a potential affinity between the target macromolecule and the complex. MTT results showed significant in vitro inhibitory effects against promastigotes. Reduction in cellular expression of IL-10 and TNF-α was also significant, p<0.05 and p<0.005, respectively. CuDMOBP showed powerful in vitro anti-leishmanial activity and could be introduced as a new leishmanicidal candidate.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.17420/ap6701.311DOI Listing
May 2021

Tris-chelated complexes of nickel(II) with bipyridine derivatives: DNA binding and cleavage, BSA binding, molecular docking, and cytotoxicity.

J Biomol Struct Dyn 2019 09 5;37(15):3887-3904. Epub 2019 Feb 5.

a Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences , Kerman , Iran.

Two nickel(II) complexes with substituted bipyridine ligand of the type [Ni(NN)](ClO), where NN is 4,4'-dimethyl-2,2'-bipyridine (dimethylbpy) () and 4,4'-dimethoxy-2,2'-bipyridine (dimethoxybpy) (), have been synthesized, characterized, and their interaction with DNA and bovine serum albumin (BSA) studied by different physical methods. X-ray crystal structure of shows a six-coordinate complex in a distorted octahedral geometry. DNA-binding studies of and reveal that both complexes sit in DNA groove and then interact with neighboring nucleotides differently; undergoes a partial intercalation. This is supported by molecular-docking studies, where hydrophobic interactions are apparent between and DNA as compared to hydrogen bonding, hydrophobic, and interactions between and DNA minor groove. Moreover, the two complexes exhibit oxidative cleavage of supercoiled plasmid DNA in the presence of hydrogen peroxide as an activator in the order of >. In terms of interaction with BSA, the results of spectroscopic methods and molecular docking show that binds with BSA only via hydrophobic contacts while interacts through hydrophobic and hydrogen bonding. It has been extensively demonstrated that the nature of the methyl- and methoxy-groups in ligands is a strong determinant of the bioactivity of nickel(II) complexes. This may justify the above differences in biomolecular interactions. In addition, the cytotoxicity of the complexes on human carcinoma cells lines (MCF-7, HT-29, and U-87) has been examined by MTT assay. According to our observations, and display cytotoxicity activity against selected cell lines. Communicated by Ramaswamy H. Sarma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2018.1534700DOI Listing
September 2019

Competitive DNA-Binding Studies between Metal Complexes and GelRed as a New and Safe Fluorescent DNA Dye.

J Fluoresc 2016 Jul 20;26(4):1505-10. Epub 2016 Jun 20.

Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.

The focus of this work is introduction of GelRed (GR) as a stable, sensitive and environmentally safe fluorescent DNA dye instead of the highly toxic ethidium bromide (EB). Competitive DNA-binding studies between metal complexes, [Cu(phen-dion)(phen)Cl]Cl (1), [Cu(phen-dione)(bpy)Cl]Cl (2), [Cu(dppt)2(H2O)]PF6 (3), [Ni(dppt)2Cl2] (4), [Zn(dppt)2Cl2] (5), and K3[Fe(CN)6] (6) (where phen-dione is 1,10-phenanthroline-5,6-dione, phen is 1,10- phenanthroline, bpy is 2,2'-bipyridine, and dppt is 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine), and GelRed have been investigated under physiological conditions by fluorescence spectroscopy. This simple method can reveal the binding affinity and mode of metal complexes with DNA. The method is based on the decrease of fluorescence derived from the displacement of GelRed from DNA by metal complexes. The % fluorescence decrease is directly related to the extent of DNA binding. Results indicate the DNA binding affinities of complexes follow the order 3 > 4 > 1 > 2 > 5 > 6. The significant quenching of the emission band of the GR-DNA with the addition of complexes 1, 3, and 4 suggests that complexes compete for DNA-binding sites with GR and displace GR from the GR-DNA, which is usually characteristic of the intercalative interaction of compounds with DNA. A small quenching of the emission band of the GR-DNA with the addition of the complex 2 was observed that show the complex weaker competes for DNA-binding sites with GR than complexes 1, 3, and 4. Results show complexes 5 and 6 cannot compete for DNA-binding sites with GR and their interaction with DNA is external binding (groove or electrostatic bindig).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-016-1850-zDOI Listing
July 2016

The Zn(II) nanocomplex: Sonochemical synthesis, characterization, DNA- and BSA-binding, cell imaging, and cytotoxicity against the human carcinoma cell lines.

J Fluoresc 2016 May 18;26(3):1007-20. Epub 2016 Mar 18.

Department of Biotechnology, Institute of Science, High Technology & Environmental Science, Graduate University of Advanced Technology, Kerman, Iran.

The focus of this article is preparation of a new kind of nanomaterial, the Zn(II) nanocomplex, to decrease growth of human carcinoma cell lines. The Zn(II) nanocomplex coordinated by phendione, [Zn(phendione)3](PF6)2 (where phendione is 1,10-phenanthroline-5,6-dione), has been synthesized by sonochemical method and characterized by FT-IR, dynamic light scattering (DLS), and scanning electron microscopy (SEM). The interaction of the complex and nanocomplex with fish sperm DNA (FS-DNA) has been investigated under physiological conditions by a series of experimental methods (fluorescence titration, viscosity, cyclic voltammetry (CV), competitive DNA-binding studies with ethidium bromide, and SEM). Results have indicated that the complex binds to FS-DNA by two biding modes, viz., electrostatic and partial insertion phendione between the base stacks of double-stranded DNA. The quenching constants (Ksv), binding constants (Kbin), and number of binding sites (n) at different temperatures, as well as thermodynamic parameters (ΔH(o), ΔS(o) and ΔG(o)) have been calculated for the BSA-complex system. Protein binding studies show that the complex and nanocomplex could bind with BSA. Results of synchronous fluorescence of BSA show that addition of the complex affect the microenvironment of both tyrosine and tryptophan residues during the binding process. The in vitro cytotoxicity of the complex and nanocomplex against the human carcinoma cell lines (MCF-7 and A-549) was evaluated by MTT assay. Results indicate that the complex and nanocomplex have greater cytotoxicity activity against MCF-7 with IC50 values of 0.2 and 0.9 mg/L, respectively. Results of the microscopic analyses of the cancer cells confirm results of cytotoxicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-016-1788-1DOI Listing
May 2016

Sonochemical Synthesis and Characterization of the Copper(II) Nanocomplex: DNA- and BSA-Binding, Cell Imaging, and Cytotoxicity Against the Human Carcinoma Cell Lines.

J Fluoresc 2016 Mar 21;26(2):545-58. Epub 2015 Dec 21.

Department of Biotechnology, Institute of Science, High Technology & Environmental Science, Graduate University of Advanced Technology, Kerman, Iran.

The focus of the present work is the preparation of new metal-based nanodrug to overcome limitations of chemotherapy such as poor water solubility of most common chemotherapeutic drugs. The copper(II) complex of 1,2,4-triazine derivatives, [Cu(dppt)2(H2O)2](2+) (dppt is 5,6-diphenyl- 3- (2-pyridyl)-1,2,4-triazine), has been synthesized at nano-size by sonochemical method and characterized by FTIR, zetasizer, and scanning electron microscopy (SEM). The interaction of the complex and nanocomplex with fish sperm DNA (FS-DNA) and BSA have been investigated under physiological conditions by a series of experimental methods. The results have indicated that the complex binds to FS-DNA by two biding modes, viz., electrostatic and intercalates into the base pairs of DNA. The competitive study with ethidium bromide (EB) shows that the complex and nanocomplex competes for the DNA-binding sites with EB. Protein binding studies show that the complex and nanocomplex could bind with BSA. The results of synchronous fluorescence of BSA show that additions of the complex affect the microenvironment of both tyrosine and tryptophan residues during the binding process. The in vitro cytotoxicity of the complex (solution in DMSO) and nanocomplex (colloid in H2O) against the human carcinoma cell lines (MCF-7 and A-549) was evaluated by MTT assay. The results of in vitro cytotoxicity indicate that the complex and nanocomplex have excellent cytotoxicity activity against MCF-7 and A-549. Results of the microscopic analyses of the cancer cells confirm the results of the cytotoxicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-015-1739-2DOI Listing
March 2016

In vitro DNA and BSA-binding, cell imaging and anticancer activity against human carcinoma cell lines of mixed ligand copper(II) complexes.

Spectrochim Acta A Mol Biomol Spectrosc 2015 30;150:390-402. Epub 2015 May 30.

Department of Biotechnology, Institute of Science, High Technology & Environmental Science, Graduate University of Advanced Technology, Kerman, Iran. Electronic address:

Binding studies of two water soluble copper(II) complexes of the type [Cu(phen-dion)(diimine)Cl]Cl, where phen-dione is 1,10-phenanthroline-5,6-dione and diimine is 1,10-phenanthroline (1) and 2,2'-bipyridine (2), with fish sperm DNA (FS-DNA) and bovine serum albumin (BSA) have been examined under physiological conditions by a series of experimental methods (UV-Vis absorption, fluorescence, viscosity, cyclic voltammetry (CV) and circular dichroism (CD) spectroscopic techniques). The experimental results indicate that the complexes interact with FS-DNA by electrostatic and partial insertion of pyridyl rings between the base stacks of double-stranded DNA. The complexes could quench the intrinsic fluorescence of BSA with the binding constants (Kbin) of 32×10(5) M(-1) (1) and 1.7×10(5) M(-1) (2) at 290 K. The quenching mechanism, thermodynamic parameters, the number of binding sites and the effect of the Cu(II) complexes on the secondary structure of BSA have been explored. The in vitro anticancer chemotherapeutic potential of two copper(II) complexes against the three human carcinoma cell lines (MCF-7, A-549, and HT-29) and one normal cell line (DPSC) were evaluated by MTT assay. The results of in vitro cytotoxicity indicate that the complex (1) has greater cytotoxicity activity against all of the cell lines, especially HT-29 with IC50 values of 1.8 μM. Based on the IC50 values, these complexes did not display an apparent cyto-selective profile, because it would appear that two complexes are toxic to all four model cell lines. The microscopic analyses of the cancer cells confirm results of cytotoxicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2015.05.076DOI Listing
September 2016

A mononuclear Cu(II) complex with 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine: Synthesis, crystal structure, DNA- and BSA-binding, molecular modeling, and anticancer activity against MCF-7, A-549, and HT-29 cell lines.

Eur J Med Chem 2015 9;96:66-82. Epub 2015 Apr 9.

Università degli Studi di Messina, dip. Scienze Chimiche, Viale Ferdinando S. d'Alcontres, 98166 Messina, Italy.

The copper(II) complex of 1,2,4-triazine derivatives, [Cu(dppt)2(H2O)](PF6)2(dppt is 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine), has been synthesized and fully characterized by spectroscopic methods and single crystal X-ray diffraction. The in vitro DNA-binding studies of the complex have been investigated by several methods. The results showed that the complex intercalates into the base pairs of DNA. The complex also indicated good binding propensity to BSA. The results of molecular docking and molecular dynamic simulation methods confirm the experimental results. Finally, the in vitro cytotoxicity indicate that the complex has excellent anticancer activity against the three human carcinoma cell lines, MCF-7, A-549, and HT-29, with IC50 values of 9.8, 7.80, and 4.50 μM, respectively. The microscopic analyses of the cancer cells demonstrate that the Cu(II) complex apparently induced apoptosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2015.04.020DOI Listing
February 2016

A mononuclear Ni(II) complex with 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine: DNA- and BSA-binding and anticancer activity against human breast carcinoma cells.

Spectrochim Acta A Mol Biomol Spectrosc 2015 Feb 30;136 Pt B:205-15. Epub 2014 Sep 30.

Department of Biotechnology, Institute of Science, High Technology & Environmental Science, Graduate University of Advance Technology, Kerman, Iran. Electronic address:

DNA- and BSA-binding properties of a mononuclear Ni(II) complex, [Ni(dppt)2Cl2] (dppt = 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine), have been investigated under physiological conditions. The interaction of the complex with the fish sperm DNA (FS-DNA) has been studied by UV-Vis absorption, thermal denaturation, viscosity measurement, competitive DNA-binding studies with ethidium bromide (EB) by fluorescence, and gel electrophoresis technique. The experimental results indicate that the complex interacts with DNA by intercalative binding mode. The competitive study with ethidium bromide (EB) shows that the complex competes for the DNA-binding sites with EB and displaces the DNA-bound EB molecule. The interactions of the dppt ligand and the complex with BSA have been studied by UV-Vis absorption and fluorescence spectroscopic techniques. The values of Kb for the BSA-dppt and the BSA-complex systems at room temperature were calculated to be 0.14×10(4) M(-1) and 0.32×10(5) M(-1), respectively, indicating that the complex has stronger tendency to bind with BSA than the dppt ligand. The quenching constants (Ksv), binding constants (Kbin), and number of binding sites (n) at different temperatures, as well as the binding distance (r) and thermodynamic parameters (ΔH°, ΔS° and ΔG°) have been calculated for the BSA-dppt and the BSA-complex systems. The cytotoxicities of the dppt ligand and the complex have been also tested against the human breast adenocarcinoma (MCF-7) cell line using the MTT assay. The results indicate that the dppt ligand and the complex display cytotoxicity against human breast cancer cell lines (MCF-7) with the IC50 values of 17.35 μM and 13.00 μM, respectively. It is remarkable that the complex can introduce as a potential anticancer drug.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2014.09.016DOI Listing
February 2015

DNA- and BSA-binding studies and anticancer activity against human breast cancer cells (MCF-7) of the zinc(II) complex coordinated by 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine.

Spectrochim Acta A Mol Biomol Spectrosc 2014 Jun 6;127:511-20. Epub 2014 Mar 6.

Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran. Electronic address:

Binding studies of a mononuclear zinc(II) complex, [Zn(dppt)2Cl2] (dppt is 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine), with DNA and bovine serum albumin (BSA) have been investigated under physiological conditions. The binding properties of the complex with fish sperm DNA (FS-DNA) have been investigated by UV-Vis absorption, thermal denaturation, competitive DNA-binding studies with ethidium bromide (EB) by fluorescence, and gel electrophoresis techniques. The competitive study with (EB) shows that the complex can displace EB from the DNA-EB system and compete for the DNA-binding sites with EB, which is usually characteristic of the intercalative interaction of compounds with DNA. The value of the fluorescence quenching constant (Ksv) was obtained as 3.1×10(4)M(-1), indicating that this complex shows a high quenching efficiency and a significant degree of binding to DNA. Moreover, the intercalative binding mode has also been verified by the results of UV-Vis absorption, thermal denaturation and gel electrophoresis. The value of Kb at room temperature was calculated to be 1.97×10(5)M(-1), indicating that the complex possesses strong tendency to bind with DNA. This value is very greater than to the values obtained for other zinc(II) complexes. The interaction of the complex with BSA has been studied by UV-Vis absorption, fluorescence and circular dichroism (CD) spectroscopic techniques. The results indicate that the complex has a quite strong ability to quench the fluorescence of BSA and the binding reaction is mainly a static quenching process. The quenching constants (KSV), the binding constants (Kb), the number of binding sites at different temperatures, the binding distance between BSA and the complex (r), and the thermodynamic parameters (ΔH(o), ΔS(o) and ΔG(o)) between BSA and the complex were calculated. The complex exhibits good binding propensity to BSA showing relatively high binding constant values. The positive ΔH(o) and ΔS(o) values indicate that the hydrophobic interaction is main force in the binding of the complex to BSA. Moreover, to evaluate the anticancer properties, the cytotoxicity of the complex has been tested against the human breast adenocarcinoma (MCF-7) cell lines using the MTT assay. The results indicate that the parent complex displays cytotoxicity against human breast cancer cell lines (MCF-7) with an IC50 value of 10.44μM. It is remarkable that the complex can introduce as a potential anticancer drug.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2014.02.048DOI Listing
June 2014