Publications by authors named "Mary F Feitosa"

139 Publications

Multiethnic Genome-Wide Association Study of Subclinical Atherosclerosis in Individuals With Type 2 Diabetes.

Circ Genom Precis Med 2021 Aug 9;14(4):e003258. Epub 2021 Jul 9.

Department of Epidemiology (N.F., G.H.), University of North Carolina, Chapel Hill.

Background: Coronary artery calcification (CAC) and carotid artery intima-media thickness (cIMT) are measures of subclinical atherosclerosis in asymptomatic individuals and strong risk factors for cardiovascular disease. Type 2 diabetes (T2D) is an independent cardiovascular disease risk factor that accelerates atherosclerosis.

Methods: We performed meta-analyses of genome-wide association studies in up to 2500 T2D individuals of European ancestry (EA) and 1590 T2D individuals of African ancestry with or without exclusion of prevalent cardiovascular disease, for CAC measured by cardiac computed tomography, and 3608 individuals of EA and 838 individuals of African ancestry with T2D for cIMT measured by ultrasonography within the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium.

Results: We replicated 2 loci (rs9369640 and rs9349379 near and rs10757278 near ) for CAC and one locus for cIMT (rs7412 and rs445925 near ) that were previously reported in the general EA populations. We identified one novel CAC locus (rs8000449 near at 13q13.3) at =2.0×10 in EA. No additional loci were identified with the meta-analyses of EA and African ancestry. The expression quantitative trait loci analysis with nearby expressed genes derived from arterial wall and metabolic tissues from the Genotype-Tissue Expression project pinpoints , encoding a matricellular protein involved in bone formation and bone matrix organization, as the potential candidate gene at this locus. In addition, we found significant associations (<3.1×10) for 3 previously reported coronary artery disease loci for these subclinical atherosclerotic phenotypes (rs2891168 near and rs11170820 near for CAC, and rs7412 near for cIMT).

Conclusions: Our results provide potential biological mechanisms that could link CAC and cIMT to increased cardiovascular disease risk in individuals with T2D.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.120.003258DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8435075PMC
August 2021

Identification of a Novel Locus for Gait Speed Decline With Aging: The Long Life Family Study.

J Gerontol A Biol Sci Med Sci 2021 Sep;76(10):e307-e313

Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, USA.

Background: Gait speed is a powerful indicator of health with aging. Potential genetic contributions to gait speed and its decline with aging are not well defined. We determined the heritability of and potential genetic regions underlying change in gait speed using longitudinal data from 2379 individuals belonging to 509 families in the Long Life Family Study (mean age 64 ± 12, range 30-110 years; 45% men).

Methods: Gait speed was measured over 4 m at baseline and follow-up (7 ± 1 years). Quantitative trait linkage analyses were completed using pedigree-based maximum likelihood methods with logarithm of the odds (LOD) scores greater than 3.0, indicating genome-wide significance. We also performed linkage analysis in the top 10% of families contributing to LOD scores to allow for heterogeneity among families (HLOD). Data were adjusted for age, sex, height, and field center.

Results: At baseline, 26.9% of individuals had "slow" gait speed less than 1.0 m/s (mean: 1.1 ± 0.2 m/s) and gait speed declined at a rate of -0.02 ± 0.03 m/s per year (p < .0001). Baseline and change in gait speed were significantly heritable (h2 = 0.24-0.32, p < .05). We did not find significant evidence for linkage for baseline gait speed; however, we identified a significant locus for change in gait speed on chromosome 16p (LOD = 4.2). A subset of 21 families contributed to this linkage peak (HLOD = 6.83). Association analyses on chromosome 16 showed that the strongest variant resides within the ADCY9 gene.

Conclusion: Further analysis of the chromosome 16 region, and ADCY9 gene, may yield new insight on the biology of mobility decline with aging.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/gerona/glab177DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8436996PMC
September 2021

Allele-specific variation at APOE increases nonalcoholic fatty liver disease and obesity but decreases risk of Alzheimer's disease and myocardial infarction.

Hum Mol Genet 2021 Jul;30(15):1443-1456

Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA.

Nonalcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and is highly correlated with metabolic disease. NAFLD results from environmental exposures acting on a susceptible polygenic background. This study performed the largest multiethnic investigation of exonic variation associated with NAFLD and correlated metabolic traits and diseases. An exome array meta-analysis was carried out among eight multiethnic population-based cohorts (n = 16 492) with computed tomography (CT) measured hepatic steatosis. A fixed effects meta-analysis identified five exome-wide significant loci (P < 5.30 × 10-7); including a novel signal near TOMM40/APOE. Joint analysis of TOMM40/APOE variants revealed the TOMM40 signal was attributed to APOE rs429358-T; APOE rs7412 was not associated with liver attenuation. Moreover, rs429358-T was associated with higher serum alanine aminotransferase, liver steatosis, cirrhosis, triglycerides and obesity; as well as, lower cholesterol and decreased risk of myocardial infarction and Alzheimer's disease (AD) in phenome-wide association analyses in the Michigan Genomics Initiative, United Kingdom Biobank and/or public datasets. These results implicate APOE in imaging-based identification of NAFLD. This association may or may not translate to nonalcoholic steatohepatitis; however, these results indicate a significant association with advanced liver disease and hepatic cirrhosis. These findings highlight allelic heterogeneity at the APOE locus and demonstrate an inverse link between NAFLD and AD at the exome level in the largest analysis to date.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddab096DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8283205PMC
July 2021

Heterogeneity of the Predictive Polygenic Risk Scores for Coronary Heart Disease Age-at-Onset in Three Different Coronary Heart Disease Family-Based Ascertainments.

Circ Genom Precis Med 2021 Jun 12;14(3):e003201. Epub 2021 Apr 12.

Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO (M.F.F., M.K.W., L.W., M.A.P.).

Background: Polygenic risk scores (PRS) for coronary heart disease (CHD) may contribute to assess the overall risk of CHD. We evaluated how PRS may influence CHD risk when the distribution of age-at-onset, sex, and family health history differ significantly.

Methods: Our study included 3 family-based ascertainments: LLFS (Long Life Family Study, N=4572), which represents a low CHD risk, and Family Heart Study, which consists of randomly selected families (FamHS-random, N=1806), and high CHD risk families (FamHS-high risk, N=2301). We examined the effects of PRS, sex, family ascertainment, PRS interaction with sex (PRS*sex) and with family ascertainment (PRS*LLFS and PRS*FamHS-high risk) on CHD, corrected for traditional cardiovascular risk factors using Cox proportional hazard regression models.

Results: Healthy-aging LLFS presented ≈17 years delayed for CHD age-at-onset compared with FamHS-high risk (1.0×10). Sex-specific association (<1.0×10) and PRS*sex (=2.7×10) predicted prevalent CHD. CHD age-at-onset was associated with PRS (hazard ratio [HR], 1.57; =1.3×10), LLFS (HR, 0.54; =2.6×10), and FamHS-high risk (HR, 2.86; =6.70x10) in men, and with PRS (HR, 1.76; =7.70×10), FamHS-high risk (HR, 4.88; =8.70×10), and PRS×FamHS-high risk (HR, 0.61; =3.60×10) in women. In the PRS extreme quartile distributions, CHD age-at-onset was associated (<0.05) with PRS, FamHS-high risk, and PRS interactions with both low and high CHD risk families for women. For men, the PRS quartile results remained similar to the whole distribution.

Conclusions: Differences in CHD family-based ascertainments show evidence of PRS interacting with sex to predict CHD risk. In women, CHD age-at-onset was associated with PRS, CHD family history, and interactions of PRS with family history. In men, PRS and CHD family history were the major effects on the CHD age-at-onset. Understanding the heterogeneity of risks associated with CHD end points at both the personal and familial levels may shed light on the underlying genetic effects influencing CHD and lead to more personalized risk prediction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.120.003201DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8214825PMC
June 2021

Discovery and fine-mapping of height loci via high-density imputation of GWASs in individuals of African ancestry.

Am J Hum Genet 2021 04 12;108(4):564-582. Epub 2021 Mar 12.

The Charles R. Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

Although many loci have been associated with height in European ancestry populations, very few have been identified in African ancestry individuals. Furthermore, many of the known loci have yet to be generalized to and fine-mapped within a large-scale African ancestry sample. We performed sex-combined and sex-stratified meta-analyses in up to 52,764 individuals with height and genome-wide genotyping data from the African Ancestry Anthropometry Genetics Consortium (AAAGC). We additionally combined our African ancestry meta-analysis results with published European genome-wide association study (GWAS) data. In the African ancestry analyses, we identified three novel loci (SLC4A3, NCOA2, ECD/FAM149B1) in sex-combined results and two loci (CRB1, KLF6) in women only. In the African plus European sex-combined GWAS, we identified an additional three novel loci (RCCD1, G6PC3, CEP95) which were equally driven by AAAGC and European results. Among 39 genome-wide significant signals at known loci, conditioning index SNPs from European studies identified 20 secondary signals. Two of the 20 new secondary signals and none of the 8 novel loci had minor allele frequencies (MAF) < 5%. Of 802 known European height signals, 643 displayed directionally consistent associations with height, of which 205 were nominally significant (p < 0.05) in the African ancestry sex-combined sample. Furthermore, 148 of 241 loci contained ≤20 variants in the credible sets that jointly account for 99% of the posterior probability of driving the associations. In summary, trans-ethnic meta-analyses revealed novel signals and further improved fine-mapping of putative causal variants in loci shared between African and European ancestry populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.02.011DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059339PMC
April 2021

Genome-wide association study of circulating interleukin 6 levels identifies novel loci.

Hum Mol Genet 2021 04;30(5):393-409

Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK.

Interleukin 6 (IL-6) is a multifunctional cytokine with both pro- and anti-inflammatory properties with a heritability estimate of up to 61%. The circulating levels of IL-6 in blood have been associated with an increased risk of complex disease pathogenesis. We conducted a two-staged, discovery and replication meta genome-wide association study (GWAS) of circulating serum IL-6 levels comprising up to 67 428 (ndiscovery = 52 654 and nreplication = 14 774) individuals of European ancestry. The inverse variance fixed effects based discovery meta-analysis, followed by replication led to the identification of two independent loci, IL1F10/IL1RN rs6734238 on chromosome (Chr) 2q14, (Pcombined = 1.8 × 10-11), HLA-DRB1/DRB5 rs660895 on Chr6p21 (Pcombined = 1.5 × 10-10) in the combined meta-analyses of all samples. We also replicated the IL6R rs4537545 locus on Chr1q21 (Pcombined = 1.2 × 10-122). Our study identifies novel loci for circulating IL-6 levels uncovering new immunological and inflammatory pathways that may influence IL-6 pathobiology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddab023DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8098112PMC
April 2021

A Noncoding Variant Near PPP1R3B Promotes Liver Glycogen Storage and MetS, but Protects Against Myocardial Infarction.

J Clin Endocrinol Metab 2021 01;106(2):372-387

Brigham and Women's Hospital, Havard University, Boston, MA, USA.

Context: Glycogen storage diseases are rare. Increased glycogen in the liver results in increased attenuation.

Objective: Investigate the association and function of a noncoding region associated with liver attenuation but not histologic nonalcoholic fatty liver disease.

Design: Genetics of Obesity-associated Liver Disease Consortium.

Setting: Population-based.

Main Outcome: Computed tomography measured liver attenuation.

Results: Carriers of rs4841132-A (frequency 2%-19%) do not show increased hepatic steatosis; they have increased liver attenuation indicative of increased glycogen deposition. rs4841132 falls in a noncoding RNA LOC157273 ~190 kb upstream of PPP1R3B. We demonstrate that rs4841132-A increases PPP1R3B through a cis genetic effect. Using CRISPR/Cas9 we engineered a 105-bp deletion including rs4841132-A in human hepatocarcinoma cells that increases PPP1R3B, decreases LOC157273, and increases glycogen perfectly mirroring the human disease. Overexpression of PPP1R3B or knockdown of LOC157273 increased glycogen but did not result in decreased LOC157273 or increased PPP1R3B, respectively, suggesting that the effects may not all occur via affecting RNA levels. Based on electronic health record (EHR) data, rs4841132-A associates with all components of the metabolic syndrome (MetS). However, rs4841132-A associated with decreased low-density lipoprotein (LDL) cholesterol and risk for myocardial infarction (MI). A metabolic signature for rs4841132-A includes increased glycine, lactate, triglycerides, and decreased acetoacetate and beta-hydroxybutyrate.

Conclusions: These results show that rs4841132-A promotes a hepatic glycogen storage disease by increasing PPP1R3B and decreasing LOC157273. rs4841132-A promotes glycogen accumulation and development of MetS but lowers LDL cholesterol and risk for MI. These results suggest that elevated hepatic glycogen is one cause of MetS that does not invariably promote MI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/clinem/dgaa855DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823249PMC
January 2021

Association Between APOE Alleles and Change of Neuropsychological Tests in the Long Life Family Study.

J Alzheimers Dis 2021 ;79(1):117-125

Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, USA.

Background: The Long Life Family Study (LLFS) is a family based, prospective study of healthy aging and familial longevity. The study includes two assessments of cognitive function that were administered approximately 8 years apart.

Objective: To test whether APOE genotype is associated with change of cognitive function in older adults.

Methods: We used Bayesian hierarchical models to test the association between APOE alleles and change of cognitive function. Six longitudinally collected neuropsychological test scores were modelled as a function of age at enrollment, follow-up time, gender, education, field center, birth cohort indicator (≤1935, or >1935), and the number of copies of ɛ2 or ɛ4 alleles.

Results: Out of 4,587 eligible participants, 2,064 were male (45.0%), and age at enrollment ranged from 25 to 110 years, with mean of 70.85 years (SD: 15.75). We detected a significant cross-sectional effect of the APOEɛ4 allele on Logical Memory. Participants carrying at least one copy of the ɛ4 allele had lower scores in both immediate (-0.31 points, 95% CI: -0.57, -0.05) and delayed (-0.37 points, 95% CI: -0.64, -0.10) recall comparing to non-ɛ4 allele carriers. We did not detect any significant longitudinal effect of the ɛ4 allele. There was no cross-sectional or longitudinal effect of the ɛ2 allele.

Conclusion: The APOEɛ4 allele was identified as a risk factor for poorer episodic memory in older adults, while the APOEɛ2 allele was not significantly associated with any of the cognitive test scores.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-201113DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7952213PMC
September 2021

Genetic loci associated with prevalent and incident myocardial infarction and coronary heart disease in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium.

PLoS One 2020 13;15(11):e0230035. Epub 2020 Nov 13.

The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America.

Background: Genome-wide association studies have identified multiple genomic loci associated with coronary artery disease, but most are common variants in non-coding regions that provide limited information on causal genes and etiology of the disease. To overcome the limited scope that common variants provide, we focused our investigation on low-frequency and rare sequence variations primarily residing in coding regions of the genome.

Methods And Results: Using samples of individuals of European ancestry from ten cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, both cross-sectional and prospective analyses were conducted to examine associations between genetic variants and myocardial infarction (MI), coronary heart disease (CHD), and all-cause mortality following these events. For prevalent events, a total of 27,349 participants of European ancestry, including 1831 prevalent MI cases and 2518 prevalent CHD cases were used. For incident cases, a total of 55,736 participants of European ancestry were included (3,031 incident MI cases and 5,425 incident CHD cases). There were 1,860 all-cause deaths among the 3,751 MI and CHD cases from six cohorts that contributed to the analysis of all-cause mortality. Single variant and gene-based analyses were performed separately in each cohort and then meta-analyzed for each outcome. A low-frequency intronic variant (rs988583) in PLCL1 was significantly associated with prevalent MI (OR = 1.80, 95% confidence interval: 1.43, 2.27; P = 7.12 × 10-7). We conducted gene-based burden tests for genes with a cumulative minor allele count (cMAC) ≥ 5 and variants with minor allele frequency (MAF) < 5%. TMPRSS5 and LDLRAD1 were significantly associated with prevalent MI and CHD, respectively, and RC3H2 and ANGPTL4 were significantly associated with incident MI and CHD, respectively. No loci were significantly associated with all-cause mortality following a MI or CHD event.

Conclusion: This study identified one known locus (ANGPTL4) and four new loci (PLCL1, RC3H2, TMPRSS5, and LDLRAD1) associated with cardiovascular disease risk that warrant further investigation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230035PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665790PMC
December 2020

Relationship Between Serum IGF-1 and BMI Differs by Age.

J Gerontol A Biol Sci Med Sci 2021 06;76(7):1303-1308

Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pennsylvania.

Background: Serum levels of insulin-like growth factor 1 (IGF-1) and body mass index (BMI) are both associated with susceptibility to age-related diseases. Reports on the correlation between them have been conflicting, with both positive to negative correlations reported. However, the age ranges of the participants varied widely among these studies.

Methods: Using data on 4241 participants (aged 24-110) from the Long Life Family Study, we investigated the relationship between IGF-1 and BMI by age groups using regression analysis.

Results: When stratified by age quartile, the relationship between IGF-1 and BMI varied: in the first quartile (Q1, 20-58 years) the relationship was negative (β = -0.2, p = .002); in Q2 (58-66 years) and Q3 (67-86 years) the relationship was negative (β = -0.07, β = -0.01, respectively) but nonsignificant; and in Q4 (87-110 years) the relationship was positive (β = 0.31, p = .0002). This pattern did not differ by sex. We observed a similar age-related pattern between IGF-1 and BMI among participants in the third National Health and Nutritional Examination Survey.

Conclusions: Our results that the relationship between IGF-1 and BMI differs by age may explain some of the inconsistency in reports about their relationship and encourage additional studies to understand the mechanisms underlying it.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/gerona/glaa282DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8202150PMC
June 2021

Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline.

Kidney Int 2021 04 31;99(4):926-939. Epub 2020 Oct 31.

Division of Nephrology, University of Washington, Seattle, Washington, USA; Kidney Research Institute, University of Washington, Seattle, Washington, USA.

Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m at follow-up among those with eGFRcrea 60 mL/min/1.73m or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.kint.2020.09.030DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010357PMC
April 2021

Genetic Studies of Leptin Concentrations Implicate Leptin in the Regulation of Early Adiposity.

Diabetes 2020 12 11;69(12):2806-2818. Epub 2020 Sep 11.

Department of Biostatistics, Boston University School of Public Health, Boston, MA.

Leptin influences food intake by informing the brain about the status of body fat stores. Rare mutations associated with congenital leptin deficiency cause severe early-onset obesity that can be mitigated by administering leptin. However, the role of genetic regulation of leptin in polygenic obesity remains poorly understood. We performed an exome-based analysis in up to 57,232 individuals of diverse ancestries to identify genetic variants that influence adiposity-adjusted leptin concentrations. We identify five novel variants, including four missense variants, in , , , and , and one intergenic variant near The missense variant Val94Met (rs17151919) in was common in individuals of African ancestry only, and its association with lower leptin concentrations was specific to this ancestry ( = 2 × 10, = 3,901). Using in vitro analyses, we show that the Met94 allele decreases leptin secretion. We also show that the Met94 allele is associated with higher BMI in young African-ancestry children but not in adults, suggesting that leptin regulates early adiposity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/db20-0070DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7679778PMC
December 2020

Deriving stratified effects from joint models investigating gene-environment interactions.

BMC Bioinformatics 2020 Jun 18;21(1):251. Epub 2020 Jun 18.

Department of Computational Biology, USR 3756 CNRS, Institut Pasteur, Paris, France.

Background: Models including an interaction term and performing a joint test of SNP and/or interaction effect are often used to discover Gene-Environment (GxE) interactions. When the environmental exposure is a binary variable, analyses from exposure-stratified models which consist of estimating genetic effect in unexposed and exposed individuals separately can be of interest. In large-scale consortia focusing on GxE interactions in which only the joint test has been performed, it may be challenging to get summary statistics from both exposure-stratified and marginal (i.e not accounting for interaction) models.

Results: In this work, we developed a simple framework to estimate summary statistics in each stratum of a binary exposure and in the marginal model using summary statistics from the "joint" model. We performed simulation studies to assess our estimators' accuracy and examined potential sources of bias, such as correlation between genotype and exposure and differing phenotypic variances within exposure strata. Results from these simulations highlight the high theoretical accuracy of our estimators and yield insights into the impact of potential sources of bias. We then applied our methods to real data and demonstrate our estimators' retained accuracy after filtering SNPs by sample size to mitigate potential bias.

Conclusions: These analyses demonstrated the accuracy of our method in estimating both stratified and marginal summary statistics from a joint model of gene-environment interaction. In addition to facilitating the interpretation of GxE screenings, this work could be used to guide further functional analyses. We provide a user-friendly Python script to apply this strategy to real datasets. The Python script and documentation are available at https://gitlab.pasteur.fr/statistical-genetics/j2s.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12859-020-03569-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7302007PMC
June 2020

Role of Rare and Low-Frequency Variants in Gene-Alcohol Interactions on Plasma Lipid Levels.

Circ Genom Precis Med 2020 08 8;13(4):e002772. Epub 2020 Jun 8.

Department of Epidemiology, School of Public Health (L.F.B., J.A.S., W.Z., S.L.R.K.), University of Michigan, Ann Arbor, MI.

Background: Alcohol intake influences plasma lipid levels, and such effects may be moderated by genetic variants. We aimed to characterize the role of aggregated rare and low-frequency protein-coding variants in gene by alcohol consumption interactions associated with fasting plasma lipid levels.

Methods: In the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, fasting plasma triglycerides and high- and low-density lipoprotein cholesterol were measured in 34 153 individuals with European ancestry from 5 discovery studies and 32 277 individuals from 6 replication studies. Rare and low-frequency functional protein-coding variants (minor allele frequency, ≤5%) measured by an exome array were aggregated by genes and evaluated by a gene-environment interaction test and a joint test of genetic main and gene-environment interaction effects. Two dichotomous self-reported alcohol consumption variables, current drinker, defined as any recurrent drinking behavior, and regular drinker, defined as the subset of current drinkers who consume at least 2 drinks per week, were considered.

Results: We discovered and replicated 21 gene-lipid associations at 13 known lipid loci through the joint test. Eight loci (, , , , , , , and ) remained significant after conditioning on the common index single-nucleotide polymorphism identified by previous genome-wide association studies, suggesting an independent role for rare and low-frequency variants at these loci. One significant gene-alcohol interaction on triglycerides in a novel locus was significantly discovered (=6.65×10 for the interaction test) and replicated at nominal significance level (=0.013) in .

Conclusions: In conclusion, this study applied new gene-based statistical approaches and suggested that rare and low-frequency genetic variants interacted with alcohol consumption on lipid levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.119.002772DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7442680PMC
August 2020

Smoking-by-genotype interaction in type 2 diabetes risk and fasting glucose.

PLoS One 2020 7;15(5):e0230815. Epub 2020 May 7.

Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America.

Smoking is a potentially causal behavioral risk factor for type 2 diabetes (T2D), but not all smokers develop T2D. It is unknown whether genetic factors partially explain this variation. We performed genome-environment-wide interaction studies to identify loci exhibiting potential interaction with baseline smoking status (ever vs. never) on incident T2D and fasting glucose (FG). Analyses were performed in participants of European (EA) and African ancestry (AA) separately. Discovery analyses were conducted using genotype data from the 50,000-single-nucleotide polymorphism (SNP) ITMAT-Broad-CARe (IBC) array in 5 cohorts from from the Candidate Gene Association Resource Consortium (n = 23,189). Replication was performed in up to 16 studies from the Cohorts for Heart Aging Research in Genomic Epidemiology Consortium (n = 74,584). In meta-analysis of discovery and replication estimates, 5 SNPs met at least one criterion for potential interaction with smoking on incident T2D at p<1x10-7 (adjusted for multiple hypothesis-testing with the IBC array). Two SNPs had significant joint effects in the overall model and significant main effects only in one smoking stratum: rs140637 (FBN1) in AA individuals had a significant main effect only among smokers, and rs1444261 (closest gene C2orf63) in EA individuals had a significant main effect only among nonsmokers. Three additional SNPs were identified as having potential interaction by exhibiting a significant main effects only in smokers: rs1801232 (CUBN) in AA individuals, rs12243326 (TCF7L2) in EA individuals, and rs4132670 (TCF7L2) in EA individuals. No SNP met significance for potential interaction with smoking on baseline FG. The identification of these loci provides evidence for genetic interactions with smoking exposure that may explain some of the heterogeneity in the association between smoking and T2D.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230815PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7205201PMC
August 2020

Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel blood pressure loci.

Mol Psychiatry 2021 06 5;26(6):2111-2125. Epub 2020 May 5.

Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.

Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES is a risk factor for hypertension and high blood pressure (BP). To identify novel BP loci, we performed multi-ancestry meta-analyses accounting for gene-educational attainment interactions using two variables, "Some College" (yes/no) and "Graduated College" (yes/no). Interactions were evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of genetic and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial pressure, and pulse pressure. We pursued genome-wide interrogation in Stage 1 studies (N = 117 438) and follow-up on promising variants in Stage 2 studies (N = 293 787) in five ancestry groups. Through combined meta-analyses of Stages 1 and 2, we identified 84 known and 18 novel BP loci at genome-wide significance level (P < 5 × 10). Two novel loci were identified based on the 1DF test of interaction with educational attainment, while the remaining 16 loci were identified through the 2DF joint test of genetic and interaction effects. Ten novel loci were identified in individuals of African ancestry. Several novel loci show strong biological plausibility since they involve physiologic systems implicated in BP regulation. They include genes involved in the central nervous system-adrenal signaling axis (ZDHHC17, CADPS, PIK3C2G), vascular structure and function (GNB3, CDON), and renal function (HAS2 and HAS2-AS1, SLIT3). Collectively, these findings suggest a role of educational attainment or SES in further dissection of the genetic architecture of BP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-020-0719-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641978PMC
June 2021

Composite Measure of Physiological Dysregulation as a Predictor of Mortality: The Long Life Family Study.

Front Public Health 2020 6;8:56. Epub 2020 Mar 6.

Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States.

Biological aging results in changes in an organism that accumulate over age in a complex fashion across different regulatory systems, and their cumulative effect manifests in increased physiological dysregulation (PD) and declining robustness and resilience that increase risks of health disorders and death. Several composite measures involving multiple biomarkers that capture complex effects of aging have been proposed. We applied one such approach, the Mahalanobis distance (D), to baseline measurements of various biomarkers (inflammation, hematological, diabetes-associated, lipids, endocrine, renal) in 3,279 participants from the Long Life Family Study (LLFS) with complete biomarker data. We used D to estimate the level of PD by summarizing information about multiple deviations of biomarkers from specified "norms" in the reference population (here, LLFS participants younger than 60 years at baseline). An increase in D was associated with significantly higher mortality risk (hazard ratio per standard deviation of D: 1.42; 95% confidence interval: [1.3, 1.54]), even after adjustment for a composite measure summarizing 85 health-related deficits (disabilities, diseases, less severe symptoms), age, and other covariates. Such composite measures significantly improved mortality predictions especially in the subsample of participants from families enriched for exceptional longevity (the areas under the receiver operating characteristic curves are 0.88 vs. 0.85, in models with and without the composite measures, = 2.9 × 10). Sensitivity analyses confirmed that our conclusions are not sensitive to different aspects of computational procedures. Our findings provide the first evidence of association of PD with mortality and its predictive performance in a unique sample selected for exceptional familial longevity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fpubh.2020.00056DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7067825PMC
May 2021

Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies.

Atherosclerosis 2020 03 14;297:102-110. Epub 2020 Feb 14.

Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA.

Backgrounds And Aims: Several genes are known to contribute to the levels and metabolism of HDL-C, however, their protective effects in cardiovascular disease (CVD), healthy aging, and longevity are complex and poorly understood. It is also unclear if these genes predict longitudinal HDL-C change. We aimed to identify loci influencing HDL-C change.

Methods: We performed a genome-wide association study (GWAS) with harmonized HDL-C and imputed genotype in three family-based studies recruited for exceptional survival (Long Life Family Study), from community-based (Framingham Heart Study) and enriched for CVD (Family Heart Study). In 7738 individuals with at least 2 visits, we employed a growth curve model to estimate the random linear trajectory parameter of age-sex-adjusted HDL-C for each person. GWAS was performed using a linear regression model on HDL-C change accounting for kinship correlations, population structure, and differences among studies.

Results: We identified a novel association for HDL-C with GRID1 (p = 5.43 × 10), which encodes a glutamate receptor channel subunit involved in synaptic plasticity. Seven suggestive novel loci (p < 1.0 × 10; MBOAT2, LINC01876-NR4A2, NTNG2, CYSLTR2, SYNE2, CTXND1-LINC01314, and CYYR1) and a known lipid gene (ABCA10) showed associations with HDL-C change. Two additional sex-specific suggestive loci were identified in women (DCLK2 and KCNJ2). Several of these genetic variants are associated with lipid-related conditions influencing cardiovascular and metabolic health, have predictive regulatory function, and are involved in lipid-related pathways.

Conclusions: Modeling longitudinal HDL-C in prospective studies, with differences in healthy aging, longevity and CVD risk, contributed to gene discovery and provided insights into mechanisms of HDL-C regulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.atherosclerosis.2020.02.005DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8098811PMC
March 2020

HDAC9 is implicated in atherosclerotic aortic calcification and affects vascular smooth muscle cell phenotype.

Nat Genet 2019 11 28;51(11):1580-1587. Epub 2019 Oct 28.

National Heart, Lung, and Blood Institute Framingham Heart Study, Framingham, MA, USA.

Aortic calcification is an important independent predictor of future cardiovascular events. We performed a genome-wide association meta-analysis to determine SNPs associated with the extent of abdominal aortic calcification (n = 9,417) or descending thoracic aortic calcification (n = 8,422). Two genetic loci, HDAC9 and RAP1GAP, were associated with abdominal aortic calcification at a genome-wide level (P < 5.0 × 10). No SNPs were associated with thoracic aortic calcification at the genome-wide threshold. Increased expression of HDAC9 in human aortic smooth muscle cells promoted calcification and reduced contractility, while inhibition of HDAC9 in human aortic smooth muscle cells inhibited calcification and enhanced cell contractility. In matrix Gla protein-deficient mice, a model of human vascular calcification, mice lacking HDAC9 had a 40% reduction in aortic calcification and improved survival. This translational genomic study identifies the first genetic risk locus associated with calcification of the abdominal aorta and describes a previously unknown role for HDAC9 in the development of vascular calcification.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0514-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858575PMC
November 2019

Genome-wide linkage analysis of carotid artery traits in exceptionally long-lived families.

Atherosclerosis 2019 12 10;291:19-26. Epub 2019 Oct 10.

Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.

Background And Aims: Atherosclerosis develops with age and is partially controlled by genetics. Research to date has identified common variants with small effects on atherosclerosis related traits. We aimed to use family-based genome-wide linkage analysis to identify chromosomal regions potentially harboring rare variants with larger effects for atherosclerosis related traits.

Methods: Participants included 2205 individuals from the Long Life Family Study (LLFS), which recruited families with exceptional longevity from Boston, New York, Pittsburgh, and Denmark. Participants underwent B-mode ultrasonography of the carotid arteries to measure intima-media thickness (IMT), inter-adventitial diameter (IAD), and plaque presence and severity. We conducted residual heritability and genome-wide linkage analyses adjusted for age, age, sex, and field center using pedigree-based maximum-likelihood methods in SOLAR.

Results: All carotid traits were significantly heritable with a range of 0.68 for IAD to 0.38 for IMT. We identified three chromosomal regions with linkage to IAD (3q13; max LOD 5.3), plaque severity (17q22-q23, max LOD 3.2), and plaque presence (17q24, max LOD 3.1). No common allelic variants within these linkage peaks were associated with the carotid artery traits.

Conclusions: We identified three chromosomal regions with evidence of linkage to carotid artery diameter and atherosclerotic plaque in exceptionally long-lived families. Since common allelic variants within our linkage peaks did not account for our findings, future follow-up resequencing of these regions in LLFS families should help advance our understanding of atherosclerosis, CVD, and healthy vascular aging.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.atherosclerosis.2019.10.008DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899182PMC
December 2019

Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria.

Nat Commun 2019 09 11;10(1):4130. Epub 2019 Sep 11.

Department of Medicine, Division of Nephrology and Hypertension, University of Utah, Salt Lake City, UT, USA.

Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-11576-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739370PMC
September 2019

Insulin Resistance Exacerbates Genetic Predisposition to Nonalcoholic Fatty Liver Disease in Individuals Without Diabetes.

Hepatol Commun 2019 Jul 18;3(7):894-907. Epub 2019 Apr 18.

Division of Statistical Genomics, Department of Genetics Washington University School of Medicine St. Louis MO.

The accumulation of excess fat in the liver (hepatic steatosis) in the absence of heavy alcohol consumption causes nonalcoholic fatty liver disease (NAFLD), which has become a global epidemic. Identifying metabolic risk factors that interact with the genetic risk of NAFLD is important for reducing disease burden. We tested whether serum glucose, insulin, insulin resistance, triglyceride (TG), low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, body mass index (BMI), and waist-to-hip ratio adjusted for BMI interact with genetic variants in or near the patatin-like phospholipase domain containing 3 () gene, the glucokinase regulatory protein () gene, the neurocan/transmembrane 6 superfamily member 2 () gene and the lysophospholipase-like 1 () gene to exacerbate hepatic steatosis, estimated by liver attenuation. We performed association analyses in 10 population-based cohorts separately and then meta-analyzed results in up to 14,751 individuals (11,870 of European ancestry and 2,881 of African ancestry). We found that rs738409 significantly interacted with insulin, insulin resistance, BMI, glucose, and TG to increase hepatic steatosis in nondiabetic individuals carrying the G allele. Additionally, rs780094 significantly interacted with insulin, insulin resistance, and TG. Conditional analyses using the two largest European ancestry cohorts in the study showed that insulin levels accounted for most of the interaction of rs738409 with BMI, glucose, and TG in nondiabetic individuals. Insulin, -rs738409, and their interaction accounted for at least 8% of the variance in hepatic steatosis in these two cohorts. Insulin resistance, either directly or through the resultant elevated insulin levels, more than other metabolic traits, appears to amplify the -rs738409-G genetic risk for hepatic steatosis. Improving insulin resistance in nondiabetic individuals carrying rs738409-G may preferentially decrease hepatic steatosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hep4.1353DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6601321PMC
July 2019

Exome-Derived Adiponectin-Associated Variants Implicate Obesity and Lipid Biology.

Am J Hum Genet 2019 07 6;105(1):15-28. Epub 2019 Jun 6.

The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, LABioMed at Harbor-UCLA Medical Center, Torrance, CA 90502, USA.

Circulating levels of adiponectin, an adipocyte-secreted protein associated with cardiovascular and metabolic risk, are highly heritable. To gain insights into the biology that regulates adiponectin levels, we performed an exome array meta-analysis of 265,780 genetic variants in 67,739 individuals of European, Hispanic, African American, and East Asian ancestry. We identified 20 loci associated with adiponectin, including 11 that had been reported previously (p < 2 × 10). Comparison of exome array variants to regional linkage disequilibrium (LD) patterns and prior genome-wide association study (GWAS) results detected candidate variants (r > .60) spanning as much as 900 kb. To identify potential genes and mechanisms through which the previously unreported association signals act to affect adiponectin levels, we assessed cross-trait associations, expression quantitative trait loci in subcutaneous adipose, and biological pathways of nearby genes. Eight of the nine loci were also associated (p < 1 × 10) with at least one obesity or lipid trait. Candidate genes include PRKAR2A, PTH1R, and HDAC9, which have been suggested to play roles in adipocyte differentiation or bone marrow adipose tissue. Taken together, these findings provide further insights into the processes that influence circulating adiponectin levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2019.05.002DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612516PMC
July 2019

A catalog of genetic loci associated with kidney function from analyses of a million individuals.

Nat Genet 2019 06 31;51(6):957-972. Epub 2019 May 31.

Diabetes and Cardiovascular Disease-Genetic Epidemiology, Department of Clincial Sciences in Malmö, Lund University, Malmö, Sweden.

Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through trans-ancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these, 147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0407-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698888PMC
June 2019

A multi-ancestry genome-wide study incorporating gene-smoking interactions identifies multiple new loci for pulse pressure and mean arterial pressure.

Hum Mol Genet 2019 08;28(15):2615-2633

Icelandic Heart Association, Kopavogur, Iceland.

Elevated blood pressure (BP), a leading cause of global morbidity and mortality, is influenced by both genetic and lifestyle factors. Cigarette smoking is one such lifestyle factor. Across five ancestries, we performed a genome-wide gene-smoking interaction study of mean arterial pressure (MAP) and pulse pressure (PP) in 129 913 individuals in stage 1 and follow-up analysis in 480 178 additional individuals in stage 2. We report here 136 loci significantly associated with MAP and/or PP. Of these, 61 were previously published through main-effect analysis of BP traits, 37 were recently reported by us for systolic BP and/or diastolic BP through gene-smoking interaction analysis and 38 were newly identified (P < 5 × 10-8, false discovery rate < 0.05). We also identified nine new signals near known loci. Of the 136 loci, 8 showed significant interaction with smoking status. They include CSMD1 previously reported for insulin resistance and BP in the spontaneously hypertensive rats. Many of the 38 new loci show biologic plausibility for a role in BP regulation. SLC26A7 encodes a chloride/bicarbonate exchanger expressed in the renal outer medullary collecting duct. AVPR1A is widely expressed, including in vascular smooth muscle cells, kidney, myocardium and brain. FHAD1 is a long non-coding RNA overexpressed in heart failure. TMEM51 was associated with contractile function in cardiomyocytes. CASP9 plays a central role in cardiomyocyte apoptosis. Identified only in African ancestry were 30 novel loci. Our findings highlight the value of multi-ancestry investigations, particularly in studies of interaction with lifestyle factors, where genomic and lifestyle differences may contribute to novel findings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddz070DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644157PMC
August 2019

Prevalence, Incidence, and Risk Factors for Overall, Physical, and Cognitive Independence Among Those From Exceptionally Long-Lived Families: The Long Life Family Study.

J Gerontol A Biol Sci Med Sci 2020 04;75(5):899-905

Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania.

Background: The Long Life Family Study (LLFS) enrolled families exhibiting exceptional longevity. The goal of this article was to determine the prevalence and predictors of remaining independent after 7 years in the oldest generation.

Methods: We examined 7-year change in physical (free of activities of daily living difficulty), cognitive (Mini-Mental State Examination score ≥ 24), and overall independence (physically/cognitively independent) in adults aged 90.3 ± 6.3 from LLFS's oldest generation. Potential predictors (n = 28) of remaining independent included demographics, diseases, biomarkers, anthropometrics, and physical and cognitive performance tasks and were determined using generalized estimating equations (α: p < .05). This was a discovery/exploratory analysis, so no multiple testing correction was employed and the results require independent replication.

Results: At baseline (n = 1442), 67.3%, 83.8%, and 79.7% were overall, physically, and cognitively independent, respectively. After 7 years, 66% died, 7.5% were lost to follow-up, and the prevalence of overall independence decreased to 59.1% in survivors (-8.2%, 95% confidence interval: -14.1%, 2.2%). Of those with baseline independence, 156/226 (69.0%) remained independent. Predictors of remaining physically independent included younger age, better Short Physical Performance Battery score and lung function, smaller waist circumference, and lower soluble receptor for advanced glycation end-product levels (p < .05). Predictors of remaining cognitively independent included no cancer history, better Digit Symbol Substitution Test performance, and higher body weight (p < .05).

Conclusions: The prevalence of independence decreased by only 8.2% after 7 years, demonstrating the close correspondence between disability and mortality. Further, despite a mean baseline age of 90 years, a large proportion of survivors remained independent, suggesting this exceptional subgroup may harbor protective mechanisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/gerona/glz124DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7164521PMC
April 2020

Multi-ancestry genome-wide gene-smoking interaction study of 387,272 individuals identifies new loci associated with serum lipids.

Nat Genet 2019 04 29;51(4):636-648. Epub 2019 Mar 29.

Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA.

The concentrations of high- and low-density-lipoprotein cholesterol and triglycerides are influenced by smoking, but it is unknown whether genetic associations with lipids may be modified by smoking. We conducted a multi-ancestry genome-wide gene-smoking interaction study in 133,805 individuals with follow-up in an additional 253,467 individuals. Combined meta-analyses identified 13 new loci associated with lipids, some of which were detected only because association differed by smoking status. Additionally, we demonstrate the importance of including diverse populations, particularly in studies of interactions with lifestyle factors, where genomic and lifestyle differences by ancestry may contribute to novel findings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0378-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6467258PMC
April 2019

An Exome-Wide Sequencing Study of the GOLDN Cohort Reveals Novel Associations of Coding Variants and Fasting Plasma Lipids.

Front Genet 2019 26;10:158. Epub 2019 Feb 26.

School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States.

Associations of both common and rare genetic variants with fasting blood lipids have been extensively studied. However, most of the rare coding variants associated with lipids are population-specific, and exploration of genetic data from diverse population samples may enhance the identification of novel associations with rare variants. We searched for novel coding genetic variants associated with fasting lipid levels in 894 samples from the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) with exome-wide sequencing-based genotype data. In single variant tests, one variant (rs11171663 in ) was associated with fasting triglyceride levels ( = 7.66E-08), explaining approximately 3.2% of the total trait variance. In gene-based tests, we found statistically significant associations between ( = 1.77E-07) and ( = 7.18E-07) and triglycerides, as well as between ( = 3.00E-07) and low-density lipoprotein cholesterol. In another independent replication cohort consisting of 3,183 African American samples from Hypertension Genetic Epidemiology Network (HyperGEN) and the Genetic Epidemiology Network of Arteriopathy (GENOA), the top genes achieved -values of 0.04 (), 0.08 (), and 0.02 (). In GOLDN, gene transcript levels of and were associated with fasting triglycerides ( = 0.07 and = 0.02), highlighting functional relevance of our findings. In this study, we present preliminary evidence of novel rare variant determinants of fasting lipids, and reveal potential underlying molecular mechanisms. Moreover, these results were replicated in an independent cohort. Our findings may inform novel biomarkers of disease risk and treatment targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fgene.2019.00158DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6399202PMC
February 2019
-->