Publications by authors named "Martin Rüdiger"

11 Publications

  • Page 1 of 1

The development of highly potent and selective small molecule correctors of Z α-antitrypsin misfolding.

Bioorg Med Chem Lett 2021 Mar 19;41:127973. Epub 2021 Mar 19.

UCL Respiratory, Rayne Institute, University College London, London WC1E 6JF, United Kingdom. Electronic address:

α1-antitrypsin deficiency is characterised by the misfolding and intracellular polymerisation of mutant α1-antitrypsin protein within the endoplasmic reticulum (ER) of hepatocytes. Small molecules that bind and stabilise Z α-antitrypsin were identified via a DNA-encoded library screen. A subsequent structure based optimisation led to a series of highly potent, selective and cellular active α1-antitrypsin correctors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2021.127973DOI Listing
March 2021

Development of a small molecule that corrects misfolding and increases secretion of Z α -antitrypsin.

EMBO Mol Med 2021 Mar 29;13(3):e13167. Epub 2021 Jan 29.

GlaxoSmithKline, Stevenage, UK.

Severe α -antitrypsin deficiency results from the Z allele (Glu342Lys) that causes the accumulation of homopolymers of mutant α -antitrypsin within the endoplasmic reticulum of hepatocytes in association with liver disease. We have used a DNA-encoded chemical library to undertake a high-throughput screen to identify small molecules that bind to, and stabilise Z α -antitrypsin. The lead compound blocks Z α -antitrypsin polymerisation in vitro, reduces intracellular polymerisation and increases the secretion of Z α -antitrypsin threefold in an iPSC model of disease. Crystallographic and biophysical analyses demonstrate that GSK716 and related molecules bind to a cryptic binding pocket, negate the local effects of the Z mutation and stabilise the bound state against progression along the polymerisation pathway. Oral dosing of transgenic mice at 100 mg/kg three times a day for 20 days increased the secretion of Z α -antitrypsin into the plasma by sevenfold. There was no observable clearance of hepatic inclusions with respect to controls over the same time period. This study provides proof of principle that "mutation ameliorating" small molecules can block the aberrant polymerisation that underlies Z α -antitrypsin deficiency.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.15252/emmm.202013167DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7933930PMC
March 2021

The molecular species responsible for α -antitrypsin deficiency are suppressed by a small molecule chaperone.

FEBS J 2021 Apr 11;288(7):2222-2237. Epub 2020 Nov 11.

UCL Respiratory, Division of Medicine, University College London, UK.

The formation of ordered Z (Glu342Lys) α -antitrypsin polymers in hepatocytes is central to liver disease in α -antitrypsin deficiency. In vitro experiments have identified an intermediate conformational state (M*) that precedes polymer formation, but this has yet to be identified in vivo. Moreover, the mechanism of polymer formation and their fate in cells have been incompletely characterised. We have used cell models of disease in conjunction with conformation-selective monoclonal antibodies and a small molecule inhibitor of polymerisation to define the dynamics of polymer formation, accumulation and secretion. Pulse-chase experiments demonstrate that Z α -antitrypsin accumulates as short-chain polymers that partition with soluble cellular components and are partially secreted by cells. These precede the formation of larger, insoluble polymers with a longer half-life (10.9 ± 1.7 h and 20.9 ± 7.4 h for soluble and insoluble polymers, respectively). The M* intermediate (or a by-product thereof) was identified in the cells by a conformation-specific monoclonal antibody. This was completely abrogated by treatment with the small molecule, which also blocked the formation of intracellular polymers. These data allow us to conclude that the M* conformation is central to polymerisation of Z α -antitrypsin in vivo; preventing its accumulation represents a tractable approach for pharmacological treatment of this condition; polymers are partially secreted; and polymers exist as two distinct populations in cells whose different dynamics have likely consequences for the aetiology of the disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.15597DOI Listing
April 2021

CDK12 inhibition reduces abnormalities in cells from patients with myotonic dystrophy and in a mouse model.

Sci Transl Med 2020 04;12(541)

School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.

Myotonic dystrophy type 1 (DM1) is an RNA-based disease with no current treatment. It is caused by a transcribed CTG repeat expansion within the 3' untranslated region of the dystrophia myotonica protein kinase () gene. Mutant repeat expansion transcripts remain in the nuclei of patients' cells, forming distinct microscopically detectable foci that contribute substantially to the pathophysiology of the condition. Here, we report small-molecule inhibitors that remove nuclear foci and have beneficial effects in the HSA mouse model, reducing transgene expression, leading to improvements in myotonia, splicing, and centralized nuclei. Using chemoproteomics in combination with cell-based assays, we identify cyclin-dependent kinase 12 (CDK12) as a druggable target for this condition. CDK12 is a protein elevated in DM1 cell lines and patient muscle biopsies, and our results showed that its inhibition led to reduced expression of repeat expansion RNA. Some of the inhibitors identified in this study are currently the subject of clinical trials for other indications and provide valuable starting points for a drug development program in DM1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.aaz2415DOI Listing
April 2020

BET bromodomain inhibitors show anti-papillomavirus activity in vitro and block CRPV wart growth in vivo.

Antiviral Res 2018 06 11;154:158-165. Epub 2018 Apr 11.

The Jake Gittlen Cancer Research Foundation, H069, Department of Pathology, C7800, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA.

The DNA papillomaviruses infect squamous epithelium and can cause persistent, benign and sometimes malignant hyperproliferative lesions. Effective antiviral drugs to treat human papillomavirus (HPV) infection are lacking and here we investigate the anti-papillomavirus activity of novel epigenetic targeting drugs, BET bromodomain inhibitors. Bromodomain and Extra-Terminal domain (BET) proteins are host proteins which regulate gene transcription, they bind acetylated lysine residues in histones and non-histone proteins via bromodomains, functioning as scaffold proteins in the formation of transcriptional complexes at gene regulatory regions. The BET protein BRD4 has been shown to be involved in the papillomavirus life cycle, as a co-factor for viral E2 and also mediating viral partitioning in some virus types. We set out to study the activity of small molecule BET bromodomain inhibitors in models of papillomavirus infection. Several BET inhibitors reduced HPV11 E1ˆE4 mRNA expression in vitro and topical therapeutic administration of an exemplar compound I-BET762, abrogated CRPV cutaneous wart growth in rabbits, demonstrating translation of anti-viral effects to efficacy in vivo. Additionally I-BET762 markedly reduced viability of HPV16 infected W12 cells compared to non-infected C33A cells. The molecular mechanism for the cytotoxicity to W12 cells is unknown but may be through blocking viral-dependent cell-survival factors. We conclude that these effects, across multiple papillomavirus types and in vivo, highlight the potential to target BET bromodomains to treat HPV infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.antiviral.2018.03.012DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5955851PMC
June 2018

Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation.

Nat Chem Biol 2015 Mar 26;11(3):189-91. Epub 2015 Jan 26.

1] EpiNova DPU, Immuno-Inflammation Therapy Area, GlaxoSmithKline,Medicines Research Centre, Stevenage, Hertfordshire, UK. [2] AstraZeneca, Oncology iMed, Cambridge Science Park, Cambridge, UK (R.J.S. and D.M.W.); Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA (D.J.S.); University of Massachussetts Medical School, Worcester, Massachusetts, USA (P.R.T.).

PAD4 has been strongly implicated in the pathogenesis of autoimmune, cardiovascular and oncological diseases through clinical genetics and gene disruption in mice. New selective PAD4 inhibitors binding a calcium-deficient form of the PAD4 enzyme have validated the critical enzymatic role of human and mouse PAD4 in both histone citrullination and neutrophil extracellular trap formation for, to our knowledge, the first time. The therapeutic potential of PAD4 inhibitors can now be explored.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nchembio.1735DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397581PMC
March 2015

Development of an insect-cell-based assay for detection of kinase inhibition using NF-kappaB-inducing kinase as a paradigm.

Biochem J 2009 Apr;419(1):65-73

Biological Reagents & Assay Development, GlaxoSmithKline R&D, New Frontiers Science Park, Third Avenue, Harlow, Essex, CM19 5AW, UK.

Identification of small-molecule inhibitors by high-throughput screening necessitates the development of robust, reproducible and cost-effective assays. The assay approach adopted may utilize isolated proteins or whole cells containing the target of interest. To enable protein-based assays, the baculovirus expression system is commonly used for generation and isolation of recombinant proteins. We have applied the baculovirus system into a cell-based assay format using NIK [NF-kappaB (nuclear factor kappaB)-inducing kinase] as a paradigm. We illustrate the use of the insect-cell-based assay in monitoring the activity of NIK against its physiological downstream substrate IkappaB (inhibitor of NF-kappaB) kinase-1. The assay was robust, yielding a signal/background ratio of 2:1 and an average Z' value of >0.65 when used to screen a focused compound set. Using secondary assays to validate a selection of the hits, we identified a compound that (i) was non-cytotoxic, (ii) interacted directly with NIK, and (iii) inhibited lymphotoxin-induced NF-kappaB p52 translocation to the nucleus. The insect cell assay represents a novel approach to monitoring kinase inhibition, with major advantages over other cell-based systems including ease of use, amenability to scale-up, protein expression levels and the flexibility to express a number of proteins by infecting with numerous baculoviruses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1042/BJ20081646DOI Listing
April 2009

Utilization of substrate-induced quenching for screening targets promoting NADH and NADPH consumption.

J Biomol Screen 2006 Feb 16;11(1):75-81. Epub 2005 Dec 16.

Assay Development, Glaxo SmithKline, Madrid, Spain.

Oxidation of reduced nicotinamide adenine dinucleotides is a common event for many biochemical reactions. However, its exploitation for ultrahigh-throughput screening purposes is not an easy task and is affected by various drawbacks. It is known that such nucleotides induce quenching on the fluorescence of several dyes and that this quenching disappears with oxidation of the nucleotide. We have made use of this property to develop an assay for high-throughput screening with NADH and NADPH-dependent reductases. Full screening campaigns have been run with excellent assay quality parameters, and interesting hits have been identified. The method is amenable to miniaturization and allows easy identification of false positives without needing extra secondary assays. Although it is based on monitoring substrate consumption, it is demonstrated that the effect of fractional conversion on assay sensitivity is negligible.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/1087057105283296DOI Listing
February 2006

A modular, fully integrated ultra-high-throughput screening system based on confocal fluorescence analysis techniques.

J Biomol Screen 2003 Dec;8(6):648-59

Evotec OAI/Evotec Technologies, Hamburg, Germany.

The rapid increase in size of compound libraries, as well as new targets emerging from the Human Genome Project, require progress in ultra-high-throughput screening (uHTS) systems. In a joint effort with scientists and engineers from the biotech and the pharmaceutical industry, a modular, fully integrated system for miniaturized uHTS was developed. The goal was to achieve high data quality in small assay volumes (1-4 microL) combined with reliable and unattended operation. Two new confocal fluorescence readers have been designed. One of the instruments is a 4-channel confocal fluorescence reader, measuring with 4 objectives in parallel. The fluorescence readout is based on single-molecule detection methods, allowing high sensitivity at low tracer concentrations and delivering an information-rich output. The other instrument is a confocal fluorescence imaging reader, where the images are analyzed in terms of generic patterns and quantified in units of intensity per pixel. Both readers are spanning the application range from assays with isolated targets in homogenous solution or membrane vesicle-based assays (4-channel reader) to cell-based assays (imaging reader). Results from a comprehensive test on these assay types demonstrate the high quality and robustness of this screening system.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/1087057103258475DOI Listing
December 2003

Constitutive oligomerization of human D2 dopamine receptors expressed in Spodoptera frugiperda 9 (Sf9) and in HEK293 cells. Analysis using co-immunoprecipitation and time-resolved fluorescence resonance energy transfer.

Eur J Biochem 2003 Oct;270(19):3928-38

School of Animal and Microbial Sciences, University of Reading, Whiteknights, Reading, UK.

Human D2Long (D2L) and D2Short (D2S) dopamine receptor isoforms were modified at their N-terminus by the addition of a human immunodeficiency virus (HIV) or a FLAG epitope tag. The receptors were then expressed in Spodoptera frugiperda 9 (Sf9) cells using the baculovirus system, and their oligomerization was investigated by means of co-immunoprecipitation and time-resolved fluorescence resonance energy transfer (FRET). [3H]Spiperone labelled D2 receptors in membranes prepared from Sf9 cells expressing epitope-tagged D2L or D2S receptors, with a pKd value of approximately 10. Co-immunoprecipitation using antibodies specific for the tags showed constitutive homo-oligomerization of D2L and D2S receptors in Sf9 cells. When the FLAG-tagged D2S and HIV-tagged D2L receptors were co-expressed, co-immunoprecipitation showed that the two isoforms can also form hetero-oligomers in Sf9 cells. Time-resolved FRET with europium and XL665-labelled antibodies was applied to whole Sf9 cells and to membranes from Sf9 cells expressing epitope-tagged D2 receptors. In both cases, constitutive homo-oligomers were revealed for D2L and D2S isoforms. Time-resolved FRET also revealed constitutive homo-oligomers in HEK293 cells expressing FLAG-tagged D2S receptors. The D2 receptor ligands dopamine, R-(-)propylnorapomorphine, and raclopride did not affect oligomerization of D2L and D2S in Sf9 and HEK293 cells. Human D2 dopamine receptors can therefore form constitutive oligomers in Sf9 cells and in HEK293 cells that can be detected by different approaches, and D2 oligomerization in these cells is not regulated by ligands.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1432-1033.2003.03773.xDOI Listing
October 2003

Single-molecule detection technologies in miniaturized high-throughput screening: fluorescence intensity distribution analysis.

J Biomol Screen 2003 Feb;8(1):19-33

GlaxoSmithKline, Direvo, Cologne, Germany.

Single-molecule detection technologies are becoming a powerful readout format to support ultra-high-throughput screening. These methods are based on the analysis of fluorescence intensity fluctuations detected from a small confocal volume element. The fluctuating signal contains information about the mass and brightness of the different species in a mixture. The authors demonstrate a number of applications of fluorescence intensity distribution analysis (FIDA), which discriminates molecules by their specific brightness. Examples for assays based on brightness changes induced by quenching/dequenching of fluorescence, fluorescence energy transfer, and multiple-binding stoichiometry are given for important drug targets such as kinases and proteases. FIDA also provides a powerful method to extract correct biological data in the presence of compound fluorescence.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/1087057102239669DOI Listing
February 2003