Publications by authors named "Marta Montesino"

5 Publications

  • Page 1 of 1

Capillary electrophoresis of Big-Dye terminator sequencing reactions for human mtDNA Control Region haplotyping in the identification of human remains.

Methods Mol Biol 2012 ;830:267-81

Comisaría General de Policía Científica, Servicio de Analítica, Laboratorio de ADN, Instituto Universitario de Investigación en Ciencias Policiales (IUICP), Madrid, Spain.

Cycle sequencing reaction with Big-Dye terminators provides the methodology to analyze mtDNA Control Region amplicons by means of capillary electrophoresis. DNA sequencing with ddNTPs or terminators was developed by (1). The progressive automation of the method by combining the use of fluorescent-dye terminators with cycle sequencing has made it possible to increase the sensibility and efficiency of the method and hence has allowed its introduction into the forensic field. PCR-generated mitochondrial DNA products are the templates for sequencing reactions. Different set of primers can be used to generate amplicons with different sizes according to the quality and quantity of the DNA extract providing sequence data for different ranges inside the Control Region.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-61779-461-2_19DOI Listing
March 2012

Ancestry analysis in the 11-M Madrid bomb attack investigation.

PLoS One 2009 Aug 11;4(8):e6583. Epub 2009 Aug 11.

Forensic Genetics Unit, Institute of Legal Medicine, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain.

The 11-M Madrid commuter train bombings of 2004 constituted the second biggest terrorist attack to occur in Europe after Lockerbie, while the subsequent investigation became the most complex and wide-ranging forensic case in Spain. Standard short tandem repeat (STR) profiling of 600 exhibits left certain key incriminatory samples unmatched to any of the apprehended suspects. A judicial order to perform analyses of unmatched samples to differentiate European and North African ancestry became a critical part of the investigation and was instigated to help refine the search for further suspects. Although mitochondrial DNA (mtDNA) and Y-chromosome markers routinely demonstrate informative geographic differentiation, the populations compared in this analysis were known to show a proportion of shared mtDNA and Y haplotypes as a result of recent gene-flow across the western Mediterranean, while any two loci can be unrepresentative of the ancestry of an individual as a whole. We based our principal analysis on a validated 34plex autosomal ancestry-informative-marker single nucleotide polymorphism (AIM-SNP) assay to make an assignment of ancestry for DNA from seven unmatched case samples including a handprint from a bag containing undetonated explosives together with personal items recovered from various locations in Madrid associated with the suspects. To assess marker informativeness before genotyping, we predicted the probable classification success for the 34plex assay with standard error estimators for a naïve Bayesian classifier using Moroccan and Spanish training sets (each n = 48). Once misclassification error was found to be sufficiently low, genotyping yielded seven near-complete profiles (33 of 34 AIM-SNPs) that in four cases gave probabilities providing a clear assignment of ancestry. One of the suspects predicted to be North African by AIM-SNP analysis of DNA from a toothbrush was identified late in the investigation as Algerian in origin. The results achieved illustrate the benefit of adding specialized marker sets to provide enhanced scope and power to an already highly effective system of DNA analysis for forensic identification.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0006583PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2719087PMC
August 2009

Results of the 2003-2004 GEP-ISFG collaborative study on mitochondrial DNA: focus on the mtDNA profile of a mixed semen-saliva stain.

Forensic Sci Int 2006 Jul 21;160(2-3):157-67. Epub 2005 Oct 21.

Instituto Nacional de Toxicología y Ciencias Forenses, Servicio de Biología, Barcelona, Spain.

We report here a review of the seventh mitochondrial DNA (mtDNA) exercise undertaken by the Spanish and Portuguese working group (GEP) of the International Society for Forensic Genetics (ISFG) corresponding to the period 2003-2004. Five reference bloodstains from five donors (M1-M5), a mixed stain of saliva and semen (M6), and a hair sample (M7) were submitted to each participating laboratory for nuclear DNA (nDNA; autosomal STR and Y-STR) and mtDNA analysis. Laboratories were asked to investigate the contributors of samples M6 and M7 among the reference donors (M1-M5). A total of 34 laboratories reported total or partial mtDNA sequence data from both, the reference bloodstains (M1-M5) and the hair sample (M7) concluding a match between mtDNA profiles of M5 and M7. Autosomal STR and Y-STR profiling was the preferred strategy to investigate the contributors of the semen/saliva mixture (M6). Nuclear DNA profiles were consistent with a mixture of saliva from the donor (female) of M4 and semen from donor M5, being the semen (XY) profile the dominant component of the mixture. Strikingly, and in contradiction to the nuclear DNA analysis, mtDNA sequencing results yield a more simple result: only the saliva contribution (M4) was detected, either after preferential lysis or after complete DNA digestion. Some labs provided with several explanations for this finding and carried out additional experiments to explain this apparent contradictory result. The results pointed to the existence of different relative amounts of nuclear and mtDNAs in saliva and semen. We conclude that this circumstance could strongly influence the interpretation of the mtDNA evidence in unbalanced mixtures and in consequence lead to false exclusions. During the GEP-ISFG annual conference a validation study was planned to progress in the interpretation of mtDNA from different mixtures.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.forsciint.2005.09.005DOI Listing
July 2006

Mitochondrial DNA error prophylaxis: assessing the causes of errors in the GEP'02-03 proficiency testing trial.

Forensic Sci Int 2005 Mar;148(2-3):191-8

Unidad de Genética, Facultad de Medicina de la Universidad de Santiago de Compostela, Instituto de Medicina Legal, A Coruña, Galicia-Spain.

We report the results of the Spanish and Portuguese working group (GEP) of the International Society for Forensic Genetics (ISFG) Collaborative Exercise 2002-2003 on mitochondrial DNA (mtDNA) analysis. Six different samples were submitted to the participating laboratories: four blood stains (M1-M2-M3-M4), one mixture blood sample (M5), and two hair shaft fragments (M6). Most of the labs reported consensus results for the blood stains, slightly improving the results of previous collaborative exercises. Although hair shaft analysis is still carried out by a small number of laboratories, this analysis yielded a high rate of success. On the contrary, the analysis of the mixture blood stain (M5) yielded a lower rate of success; in spite of this, the whole results on M5 typing demonstrated the suitability of mtDNA analysis in mixture samples. We have found that edition errors are among the most common mistakes reported by the different labs. In addition, we have detected contamination events as well as other minor problems, i.e. lack of standarization in nomenclature for punctual and length heteroplasmies, and indels. In the present edition of the GEP-ISFG exercise we have paid special attention to the visual phylogenetic inspection for detecting common sequencing errors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.forsciint.2004.06.008DOI Listing
March 2005

The 2000-2001 GEP-ISFG Collaborative Exercise on mtDNA: assessing the cause of unsuccessful mtDNA PCR amplification of hair shaft samples.

Forensic Sci Int 2003 Jun;134(1):46-53

Comisara General de Policía Científica, Sección de Biología-ADN, Madrid, Spain.

We report the results of Spanish and Portuguese working group (GEP) of International Society of Forensic Genetics (ISFG) Collaborative Exercise 2001-2002 on mitochondrial DNA (mtDNA) analysis. 64 laboratories from Spain, Portugal and several Latin-American countries participated in this quality control exercise. Five samples were sent to the participating laboratories, four blood stains (M1-M4) and a sample (M5) consisting of two hair shaft fragments. M4 was non-human (Felis catus) in origin; therefore, the capacity of the labs to identify the biological source of this sample was an integral part of the exercise. Some labs detected the non-human origin of M4 by carrying out immuno-diffussion techniques using antihuman serum, whereas others identified the specific animal origin by testing the sample against a set of animal antibodies or by means of the analysis of mtDNA regions (Cyt-b, 12S, and 16S genes). The results of the other three human blood stains (M1-M3) improved in relation to the last Collaborative Exercises but those related to hairs yielded a low rate of success which clearly contrasts with previous results. As a consequence of this, some labs performed additional analysis showing that the origin of this low efficiency was not the presence of inhibitors, but the low quantity of DNA present in these specific hair samples and the degradation. As a general conclusion the results emphasize the need of external proficiency testing as part of the accreditation procedure for the labs performing mtDNA analysis in forensic casework.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0379-0738(03)00095-1DOI Listing
June 2003