Publications by authors named "Mark W Moore"

13 Publications

  • Page 1 of 1

Archaeology and art in context: Excavations at the Gunu Site Complex, Northwest Kimberley, Western Australia.

PLoS One 2020 5;15(2):e0226628. Epub 2020 Feb 5.

Centre for Archaeological Science, University of Wollongong, Wollongong, New South Wales, Australia.

The Kimberley region of Western Australia is one of the largest and most diverse rock art provenances in the world, with a complex stylistic sequence spanning at least 16 ka, culminating in the modern art-making of the Wunumbal people. The Gunu Site Complex, in the remote Mitchell River region of the northwest Kimberley, is one of many local expressions of the Kimberley rock art sequence. Here we report excavations at two sites in this complex: Gunu Rock, a sand sheet adjacent to rock art panels; and Gunu Cave, a floor deposit within an extensive rockshelter. Excavations at Gunu Rock provide evidence for two phases of occupation, the first from 7-8 to 2.7 ka, and the second from 1064 cal BP. Excavations at Gunu Rock provide evidence for occupation from the end of the second phase to the recent past. Stone for tools in the early phase were procured from a variety of sources, but quartz crystal reduction dominated the second occupation phase. Small quartz crystals were reduced by freehand percussion to provide small flake tools and blanks for manufacturing small points called nguni by the Wunambal people today. Quartz crystals were prominent in historic ritual practices associated with the Wanjina belief system. Complex methods of making bifacially-thinned and pressure flaked quartzite projectile points emerged after 2.7 ka. Ochre pigments were common in both occupation phases, but evidence for occupation contemporaneous with the putative age of the oldest rock art styles was not discovered in the excavations. Our results show that developing a complete understanding of rock art production and local occupation patterns requires paired excavations inside and outside of the rockshelters that dominate the Kimberley.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226628PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7001911PMC
April 2020

Last appearance of Homo erectus at Ngandong, Java, 117,000-108,000 years ago.

Nature 2020 01 18;577(7790):381-385. Epub 2019 Dec 18.

Department of Anthropology and Museum of Natural History, University of Iowa, Iowa City, IA, USA.

Homo erectus is the founding early hominin species of Island Southeast Asia, and reached Java (Indonesia) more than 1.5 million years ago. Twelve H. erectus calvaria (skull caps) and two tibiae (lower leg bones) were discovered from a bone bed located about 20 m above the Solo River at Ngandong (Central Java) between 1931 and 1933, and are of the youngest, most-advanced form of H. erectus. Despite the importance of the Ngandong fossils, the relationship between the fossils, terrace fill and ages have been heavily debated. Here, to resolve the age of the Ngandong evidence, we use Bayesian modelling of 52 radiometric age estimates to establish-to our knowledge-the first robust chronology at regional, valley and local scales. We used uranium-series dating of speleothems to constrain regional landscape evolution; luminescence, argon/argon (Ar/Ar) and uranium-series dating to constrain the sequence of terrace evolution; and applied uranium-series and uranium series-electron-spin resonance (US-ESR) dating to non-human fossils to directly date our re-excavation of Ngandong. We show that at least by 500 thousand years ago (ka) the Solo River was diverted into the Kendeng Hills, and that it formed the Solo terrace sequence between 316 and 31 ka and the Ngandong terrace between about 140 and 92 ka. Non-human fossils recovered during the re-excavation of Ngandong date to between 109 and 106 ka (uranium-series minimum) and 134 and 118 ka (US-ESR), with modelled ages of 117 to 108 thousand years (kyr) for the H. erectus bone bed, which accumulated during flood conditions. These results negate the extreme ages that have been proposed for the site and solidify Ngandong as the last known occurrence of this long-lived species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-019-1863-2DOI Listing
January 2020

A reassessment of the early archaeological record at Leang Burung 2, a Late Pleistocene rock-shelter site on the Indonesian island of Sulawesi.

PLoS One 2018 11;13(4):e0193025. Epub 2018 Apr 11.

Centre for Archaeological Science, School of Earth & Environmental Sciences, University of Wollongong, Wollongong, New South Wales, Australia.

This paper presents a reassessment of the archaeological record at Leang Burung 2, a key early human occupation site in the Late Pleistocene of Southeast Asia. Excavated originally by Ian Glover in 1975, this limestone rock-shelter in the Maros karsts of Sulawesi, Indonesia, has long held significance in our understanding of early human dispersals into 'Wallacea', the vast zone of oceanic islands between continental Asia and Australia. We present new stratigraphic information and dating evidence from Leang Burung 2 collected during the course of our excavations at this site in 2007 and 2011-13. Our findings suggest that the classic Late Pleistocene modern human occupation sequence identified previously at Leang Burung 2, and proposed to span around 31,000 to 19,000 conventional 14C years BP (~35-24 ka cal BP), may actually represent an amalgam of reworked archaeological materials. Sources for cultural materials of mixed ages comprise breccias from the rear wall of the rock-shelter-remnants of older, eroded deposits dated to 35-23 ka cal BP-and cultural remains of early Holocene antiquity. Below the upper levels affected by the mass loss of Late Pleistocene deposits, our deep-trench excavations uncovered evidence for an earlier hominin presence at the site. These findings include fossils of now-extinct proboscideans and other 'megafauna' in stratified context, as well as a cobble-based stone artifact technology comparable to that produced by late Middle Pleistocene hominins elsewhere on Sulawesi.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0193025PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5894965PMC
July 2018

Early human symbolic behavior in the Late Pleistocene of Wallacea.

Proc Natl Acad Sci U S A 2017 04 3;114(16):4105-4110. Epub 2017 Apr 3.

Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Brisbane, QLD, Australia 4111.

Wallacea, the zone of oceanic islands separating the continental regions of Southeast Asia and Australia, has yielded sparse evidence for the symbolic culture of early modern humans. Here we report evidence for symbolic activity 30,000-22,000 y ago at Leang Bulu Bettue, a cave and rock-shelter site on the Wallacean island of Sulawesi. We describe hitherto undocumented practices of personal ornamentation and portable art, alongside evidence for pigment processing and use in deposits that are the same age as dated rock art in the surrounding karst region. Previously, assemblages of multiple and diverse types of Pleistocene "symbolic" artifacts were entirely unknown from this region. The Leang Bulu Bettue assemblage provides insight into the complexity and diversification of modern human culture during a key period in the global dispersal of our species. It also shows that early inhabitants of Sulawesi fashioned ornaments from body parts of endemic animals, suggesting modern humans integrated exotic faunas and other novel resources into their symbolic world as they colonized the biogeographically unique regions southeast of continental Eurasia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1619013114DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5402422PMC
April 2017

Experimental Insights into the Cognitive Significance of Early Stone Tools.

PLoS One 2016 8;11(7):e0158803. Epub 2016 Jul 8.

Stone Tools and Cognition Hub, Archaeology, University of New England, Armidale, New South Wales, Australia.

Stone-flaking technology is the most enduring evidence for the evolving cognitive abilities of our early ancestors. Flake-making was mastered by African hominins ~3.3 ma, followed by the appearance of handaxes ~1.75 ma and complex stone reduction strategies by ~1.6 ma. Handaxes are stones flaked on two opposed faces ('bifacially'), creating a robust, sharp-edged tool, and complex reduction strategies are reflected in strategic prior flaking to prepare or 'predetermine' the nature of a later flake removal that served as a tool blank. These technologies are interpreted as major milestones in hominin evolution that reflect the development of higher-order cognitive abilities, and the presence and nature of these technologies are used to track movements of early hominin species or 'cultures' in the archaeological record. However, the warranting argument that certain variations in stone tool morphologies are caused by differences in cognitive abilities relies on analogy with technical replications by skilled modern stoneworkers, and this raises the possibility that researchers are projecting modern approaches to technical problems onto our non-modern hominin ancestors. Here we present the results of novel experiments that randomise flake removal and disrupt the modern stoneworker's inclination to use higher-order reasoning to guide the stone reduction process. Although our protocols prevented goal-directed replication of stone tool types, the experimental assemblage is morphologically standardised and includes handaxe-like 'protobifaces' and cores with apparently 'predetermined' flake removals. This shows that the geometrical constraints of fracture mechanics can give rise to what appear to be highly-designed stoneworking products and techniques when multiple flakes are removed randomly from a stone core.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0158803PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4938430PMC
July 2017

Age and context of the oldest known hominin fossils from Flores.

Nature 2016 06;534(7606):249-53

Centre for Archaeological Science, School of Earth &Environmental Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia.

Recent excavations at the early Middle Pleistocene site of Mata Menge in the So'a Basin of central Flores, Indonesia, have yielded hominin fossils attributed to a population ancestral to Late Pleistocene Homo floresiensis. Here we describe the age and context of the Mata Menge hominin specimens and associated archaeological findings. The fluvial sandstone layer from which the in situ fossils were excavated in 2014 was deposited in a small valley stream around 700 thousand years ago, as indicated by (40)Ar/(39)Ar and fission track dates on stratigraphically bracketing volcanic ash and pyroclastic density current deposits, in combination with coupled uranium-series and electron spin resonance dating of fossil teeth. Palaeoenvironmental data indicate a relatively dry climate in the So'a Basin during the early Middle Pleistocene, while various lines of evidence suggest the hominins inhabited a savannah-like open grassland habitat with a wetland component. The hominin fossils occur alongside the remains of an insular fauna and a simple stone technology that is markedly similar to that associated with Late Pleistocene H. floresiensis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature17663DOI Listing
June 2016

Earliest hominin occupation of Sulawesi, Indonesia.

Nature 2016 Jan;529(7585):208-11

Centre for Archaeological Science, School of Earth &Environmental Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia.

Sulawesi is the largest and oldest island within Wallacea, a vast zone of oceanic islands separating continental Asia from the Pleistocene landmass of Australia and Papua (Sahul). By one million years ago an unknown hominin lineage had colonized Flores immediately to the south, and by about 50 thousand years ago, modern humans (Homo sapiens) had crossed to Sahul. On the basis of position, oceanic currents and biogeographical context, Sulawesi probably played a pivotal part in these dispersals. Uranium-series dating of speleothem deposits associated with rock art in the limestone karst region of Maros in southwest Sulawesi has revealed that humans were living on the island at least 40 thousand years ago (ref. 5). Here we report new excavations at Talepu in the Walanae Basin northeast of Maros, where in situ stone artefacts associated with fossil remains of megafauna (Bubalus sp., Stegodon and Celebochoerus) have been recovered from stratified deposits that accumulated from before 200 thousand years ago until about 100 thousand years ago. Our findings suggest that Sulawesi, like Flores, was host to a long-established population of archaic hominins, the ancestral origins and taxonomic status of which remain elusive.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature16448DOI Listing
January 2016

The International Mouse Phenotyping Consortium: past and future perspectives on mouse phenotyping.

Mamm Genome 2012 Oct 1;23(9-10):632-40. Epub 2012 Sep 1.

MRC Mammalian Genetics Unit, MRC Harwell, Oxfordshire OX11 0RD, UK.

Determining the function of all mammalian genes remains a major challenge for the biomedical science community in the 21st century. The goal of the International Mouse Phenotyping Consortium (IMPC) over the next 10 years is to undertake broad-based phenotyping of 20,000 mouse genes, providing an unprecedented insight into mammalian gene function. This short article explores the drivers for large-scale mouse phenotyping and provides an overview of the aims and processes involved in IMPC mouse production and phenotyping.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00335-012-9427-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774932PMC
October 2012

Stone artifacts and hominins in island Southeast Asia: new insights from Flores, eastern Indonesia.

J Hum Evol 2007 Jan 18;52(1):85-102. Epub 2006 Aug 18.

Department of Archaeology and Palaeoanthropology, School of Human and Environmental Studies, University of New England, Armidale, New South Wales, 2351, Australia.

This study reexamines the current understanding of Pleistocene stone-artifact assemblages in island Southeast Asia. A differentiation has long been made between assemblages of large-sized "core tools" and assemblages of small-sized "flake tools." "Core tool" assemblages are often argued to be the handiwork of early hominin species such as Homo erectus, while small-sized "flake tool" assemblages have been attributed to Homo sapiens. We argue that this traditional Southeast Asian perspective on stone tools assumes that the artifacts recovered from a site reflect a complete technological sequence. Our analyses of Pleistocene-age artifact assemblages from Flores, Indonesia, demonstrate that large pebble-based cores and small flake-based cores are aspects of one reduction sequence. We propose that the Flores pattern applies across island Southeast Asia: large-sized "core tool" assemblages are in fact a missing element of the small-sized flake-based reduction sequences found in many Pleistocene caves and rock-shelters. We conclude by discussing the implications of this for associating stone-artifact assemblages with hominin species in island Southeast Asia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhevol.2006.08.002DOI Listing
January 2007

Early stone technology on Flores and its implications for Homo floresiensis.

Nature 2006 Jun;441(7093):624-8

Department of Archaeology and Natural History, Research School of Pacific and Asian Studies, Australian National University, Canberra, Australian Capital Territory 0200, Australia.

In the Soa Basin of central Flores, eastern Indonesia, stratified archaeological sites, including Mata Menge, Boa Lesa and Kobatuwa (Fig. 1), contain stone artefacts associated with the fossilized remains of Stegodon florensis, Komodo dragon, rat and various other taxa. These sites have been dated to 840-700 kyr bp (thousand years before present). The authenticity of the Soa Basin artefacts and their provenance have been demonstrated by previous work, but to quell lingering doubts, here we describe the context, attributes and production modes of 507 artefacts excavated at Mata Menge. We also note specific similarities, and apparent technological continuity, between the Mata Menge stone artefacts and those excavated from Late Pleistocene levels at Liang Bua cave, 50 km to the west. The latter artefacts, dated to between 95-74 and 12 kyr ago, are associated with the remains of a dwarfed descendent of S. florensis, Komodo dragon, rat and a small-bodied hominin species, Homo floresiensis, which had a brain size of about 400 cubic centimetres. The Mata Menge evidence negates claims that stone artefacts associated with H. floresiensis are so complex that they must have been made by modern humans (Homo sapiens).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature04618DOI Listing
June 2006

The knockout mouse project.

Nat Genet 2004 Sep;36(9):921-4

National Human Genome Research Institute, National Institutes of Health, Building 31, Room 4B09, 31 Center Drive, Bethesda, Maryland 20892, USA.

Mouse knockout technology provides a powerful means of elucidating gene function in vivo, and a publicly available genome-wide collection of mouse knockouts would be significantly enabling for biomedical discovery. To date, published knockouts exist for only about 10% of mouse genes. Furthermore, many of these are limited in utility because they have not been made or phenotyped in standardized ways, and many are not freely available to researchers. It is time to harness new technologies and efficiencies of production to mount a high-throughput international effort to produce and phenotype knockouts for all mouse genes, and place these resources into the public domain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng0904-921DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2716027PMC
September 2004