Publications by authors named "Mark W Hamrick"

118 Publications

A Tryptophan-Deficient Diet Induces Gut Microbiota Dysbiosis and Increases Systemic Inflammation in Aged Mice.

Int J Mol Sci 2021 May 8;22(9). Epub 2021 May 8.

Department of Medicine, Augusta University, Augusta, GA 30912, USA.

The gut microflora is a vital component of the gastrointestinal (GI) system that regulates local and systemic immunity, inflammatory response, the digestive system, and overall health. Older people commonly suffer from inadequate nutrition or poor diets, which could potentially alter the gut microbiota. The essential amino acid (AA) tryptophan (TRP) is a vital diet component that plays a critical role in physiological stress responses, neuropsychiatric health, oxidative systems, inflammatory responses, and GI health. The present study investigates the relationship between varied TRP diets, the gut microbiome, and inflammatory responses in an aged mouse model. We fed aged mice either a TRP-deficient (0.1%), TRP-recommended (0.2%), or high-TRP (1.25%) diet for eight weeks and observed changes in the gut bacterial environment and the inflammatory responses via cytokine analysis (IL-1a, IL-6, IL-17A, and IL-27). The mice on the TRP-deficient diets showed changes in their bacterial abundance of Coriobacteriia class, genus, Lachnospiraceae family, species, sp genus, and genus. Further, these mice showed significant increases in IL-6, IL-17A, and IL-1a and decreased IL-27 levels. These data suggest a direct association between dietary TRP content, the gut microbiota microenvironment, and inflammatory responses in aged mice models.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms22095005DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8125914PMC
May 2021

Role of fibro-adipogenic progenitor cells in muscle atrophy and musculoskeletal diseases.

Curr Opin Pharmacol 2021 Jun 8;58:1-7. Epub 2021 Apr 8.

Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA. Electronic address:

Maintaining muscle mass is clinically important as muscle helps to regulate metabolic systems of the body as well as support activities of daily living that require mobility, strength, and power. Losing muscle mass decreases an individual's independence and quality of life, and at the same time increases the risk of disease burden. Fibro-adipogenic progenitor (FAP) cells are a group of muscle progenitor cells that play an important role in muscle regeneration and maintenance of skeletal muscle fiber size. These important functions of FAPs are mediated by a complex secretome that interacts in a paracrine manner to stimulate muscle satellite cells to divide and differentiate. Dysregulation of FAP differentiation leads to fibrosis, fatty infiltration, muscle atrophy, and impaired muscle regeneration. Functional deficits in skeletal muscle resulting from atrophy, fibrosis, or fatty infiltration will reduce biomechanical stresses on the skeleton, and both FAP-derived adipocytes and FAPs themselves are likely to secrete factors that can induce bone loss. These findings suggest that FAPs represent a cell population to be targeted therapeutically to improve both muscle and bone health in settings of aging, injury, and disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.coph.2021.03.003DOI Listing
June 2021

The cyclophilin inhibitor NIM-811 increases muscle cell survival with hypoxia in vitro and improves gait performance following ischemia-reperfusion in vivo.

Sci Rep 2021 Mar 17;11(1):6152. Epub 2021 Mar 17.

Medical College of Georgia, Augusta University, Augusta, GA, USA.

Acute ischemia-reperfusion injury in skeletal muscle is a significant clinical concern in the trauma setting. The mitochondrial permeability transition inhibitor NIM-811 has previously been shown to reduce ischemic injury in the liver and kidney. The effects of this treatment on skeletal muscle are, however, not well understood. We first used an in vitro model of muscle cell ischemia in which primary human skeletal myoblasts were exposed to hypoxic conditions (1% O and 5% CO) for 6 h. Cells were treated with NIM-811 (0-20 µM). MTS assay was used to quantify cell survival and LDH assay to quantify cytotoxicity 2 h after treatment. Results indicate that NIM-811 treatment of ischemic myotubes significantly increased cell survival and decreased LDH in a dose-dependent manner. We then examined NIM-811 effects in vivo using orthodontic rubber bands (ORBs) for 90 min of single hindlimb ischemia. Mice received vehicle or NIM-811 (10 mg/kg BW) 10 min before reperfusion and 3 h later. Ischemia and reperfusion were monitored using laser speckle imaging. In vivo data demonstrate that mice treated with NIM-811 showed increased gait speed and improved Tarlov scores compared to vehicle-treated mice. The ischemic limbs of female mice treated with NIM-811 showed significantly lower levels of MCP-1, IL-23, IL-6, and IL-1α compared to limbs of vehicle-treated mice. Similarly, male mice treated with NIM-811 showed significantly lower levels of MCP-1 and IL-1a. These findings are clinically relevant as MCP-1, IL-23, IL-6, and IL-1α are all pro-inflammatory factors that are thought to contribute directly to tissue damage after ischemic injury. Results from the in vitro and in vivo experiments suggest that NIM-811 and possibly other mitochondrial permeability transition inhibitors may be effective for improving skeletal muscle salvage and survival after ischemia-reperfusion injury.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-021-85753-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969970PMC
March 2021

Kynurenine induces an age-related phenotype in bone marrow stromal cells.

Mech Ageing Dev 2021 04 22;195:111464. Epub 2021 Feb 22.

Department of Medicine, Augusta University, Augusta, GA, United States; Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, United States; Center for Healthy Aging, Augusta University, Augusta, GA, United States. Electronic address:

Advanced age is one of the important contributing factors for musculoskeletal deterioration. Although the exact mechanism behind this degeneration is unknown, it has been previously established that nutritional signaling plays a vital role in musculoskeletal pathophysiology. Our group established the vital role of the essential amino acid, tryptophan, in aging musculoskeletal health. With advanced age, inflammatory factors activate indoleamine 2,3-dioxygenase (IDO1) and accumulate excessive intermediate tryptophan metabolites such as Kynurenine (KYN). With age, Kynurenine accumulates and suppresses osteogenic differentiation, impairs autophagy, promotes early senescence, and alters cellular bioenergetics of bone marrow stem cells. Recent studies have shown that Kynurenine negatively impacts bone marrow stromal cells (BMSCs) and, consequently, promotes bone loss. Overall, understanding the mechanism behind BMSCs losing their ability for osteogenic differentiation can provide insight into the prevention of osteoporosis and the development of targeted therapies. Therefore, in this article, we review Kynurenine and how it plays a vital role in BMSC dysfunction and bone loss with age.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mad.2021.111464DOI Listing
April 2021

Targeting the Mitochondrial Permeability Transition Pore to Prevent Age-Associated Cell Damage and Neurodegeneration.

Oxid Med Cell Longev 2021 28;2021:6626484. Epub 2021 Jan 28.

Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.

The aging process is associated with significant alterations in mitochondrial function. These changes in mitochondrial function are thought to involve increased production of reactive oxygen species (ROS), which over time contribute to cell death, senescence, tissue degeneration, and impaired tissue repair. The mitochondrial permeability transition pore (mPTP) is likely to play a critical role in these processes, as increased ROS activates mPTP opening, which further increases ROS production. Injury and inflammation are also thought to increase mPTP opening, and chronic, low-grade inflammation is a hallmark of aging. Nicotinamide adenine dinucleotide (NAD+) can suppress the frequency and duration of mPTP opening; however, NAD+ levels are known to decline with age, further stimulating mPTP opening and increasing ROS release. Research on neurodegenerative diseases, particularly on Parkinson's disease (PD) and Alzheimer's disease (AD), has uncovered significant findings regarding mPTP openings and aging. Parkinson's disease is associated with a reduction in mitochondrial complex I activity and increased oxidative damage of DNA, both of which are linked to mPTP opening and subsequent ROS release. Similarly, AD is associated with increased mPTP openings, as evidenced by amyloid-beta (A) interaction with the pore regulator cyclophilin D (CypD). Targeted therapies that can reduce the frequency and duration of mPTP opening may therefore have the potential to prevent age-related declines in cell and tissue function in various systems including the central nervous system.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2021/6626484DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861926PMC
May 2021

Sex-Specific Differences in Extracellular Vesicle Protein Cargo in Synovial Fluid of Patients with Osteoarthritis.

Life (Basel) 2020 Dec 10;10(12). Epub 2020 Dec 10.

Department of Pathology, Augusta University, Augusta, GA 30912, USA.

Women are at a significantly higher risk of developing osteoarthritis (OA) compared to males. The pathogenesis of osteoarthritis (OA) in women is poorly understood. Extracellular vesicles (EVs) have been shown to play an essential role in numerous signaling processes during the pathogenesis of age-related diseases via paracrine signaling. Molecular profiling of the synovial fluid-derived EVs cargo in women may help in the discovery of novel biomarkers and therapeutics for the treatment of OA in women. Previously, we reported that synovial fluid-derived EV miRNA cargo differs in a sex-specific manner. This study aims to characterize synovial fluid-derived EV protein cargo in OA patients. Our data showed sex-specific EVs protein content in OA. We found haptoglobin, orosomucoid, and ceruloplasmin significantly up-regulated, whereas apolipoprotein down-regulated in female OA EVs. In males, we discovered β-2-glycoprotein, and complement component 5 proteins significantly up-regulated and Spt-Ada-Gcn5 acetyltransferase (SAGA)-associated factor 29 down-regulated in male OA EVs. Database for Annotation, Visualization, and Integrated Discovery (DAVID) and QuickGO analysis revealed OA-specific protein involvement in several biological, molecular, and cellular pathways, specifically in inflammatory processes. In conclusion, synovial fluid EV protein content is altered in a sex-specific manner with OA, explaining the increased prevalence and severity of OA in women.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/life10120337DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763294PMC
December 2020

The association of circulating kynurenine, a tryptophan metabolite, with frailty in older adults.

Aging (Albany NY) 2020 11 13;12(21):22253-22265. Epub 2020 Nov 13.

Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.

Despite the accumulating evidence from and animal experiments supporting the role of kynurenine (a tryptophan metabolite) in a number of degenerative age-related changes, the relationship between kynurenine and frailty in older adults is not well understood. We collected blood samples from 73 participants who underwent a comprehensive geriatric assessment, measuring kynurenine levels using liquid chromatography-tandem mass spectrometry. We assessed the phenotypic frailty and the deficit accumulation frailty index using widely validated approaches proposed by Fried et al. and Rockwood et al., respectively. After adjusting for sex, age, and body mass index, the frail participants presented 52.9% and 34.3% higher serum kynurenine levels than those with robustness and prefrailty, respectively ( = 0.005 and 0.014, respectively). Serum kynurenine levels were positively associated with the frailty index, time to complete 5 chair stands, and patient health questionnaire-2 score and inversely associated with grip strength and gait speed ( = 0.042 to <0.001). Furthermore, the odds ratio per increase in serum kynurenine level for phenotypic frailty was approximately 2.62 (95% confidence interval = 1.22-5.65, = 0.014). These data provide clinical evidence that circulating kynurenine might be a potential biomarker for assessing the risk of frailty in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/aging.104179DOI Listing
November 2020

Kynurenine Promotes RANKL-Induced Osteoclastogenesis In Vitro by Activating the Aryl Hydrocarbon Receptor Pathway.

Int J Mol Sci 2020 Oct 26;21(21). Epub 2020 Oct 26.

Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, USA.

There is increasing evidence of the involvement of the tryptophan metabolite kynurenine (KYN) in disrupting osteogenesis and contributing to aging-related bone loss. Here, we show that KYN has an effect on bone resorption by increasing osteoclastogenesis. We have previously reported that in vivo treatment with KYN significantly increased osteoclast number lining bone surfaces. Here, we report the direct effect of KYN on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis in Raw 264.7 macrophage cells, and we propose a potential mechanism for these KYN-mediated effects. We show that KYN/RANKL treatment results in enhancement of RANKL-induced osteoclast differentiation. KYN drives upregulation and activation of the key osteoclast transcription factors, c-fos and NFATc1 resulting in an increase in the number of multinucleated TRAP+ osteoclasts, and in hydroxyapatite bone resorptive activity. Mechanistically, the KYN receptor, aryl hydrocarbon receptor (AhR), plays an important role in the induction of osteoclastogenesis. We show that blocking AhR signaling using an AhR antagonist, or AhR siRNA, downregulates the KYN/RANKL-mediated increase in c-fos and NFATc1 and inhibits the formation of multinucleated TRAP + osteoclasts. Altogether, this work highlights that the novelty of the KYN and AhR pathways might have a potential role in helping to regulate osteoclast function with age and supports pursuing additional research to determine if they are potential therapeutic targets for the prevention or treatment of osteoporosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms21217931DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662708PMC
October 2020

Lack of association between circulating apelin level and frailty-related functional parameters in older adults: a cross-sectional study.

BMC Geriatr 2020 10 21;20(1):420. Epub 2020 Oct 21.

Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.

Background: Apelin, an active endogenous peptide, has been recently receiving great attention as a promising target for antiaging intervention, primarily based on results from genetically altered mice. To validate previous experimental data and investigate the possible role of apelin in humans, in this study, we examined serum apelin level in relation to frailty and its associated parameters in a cohort of ambulatory, community-dwelling older adults.

Methods: Blood samples were collected from 80 participants who underwent a comprehensive geriatric assessment, and apelin level was measured using an enzyme immunoassay kit. Phenotypic frailty and deficit-accumulation frailty index (FI) were assessed using widely validated approaches, proposed by Fried and Rockwood groups, respectively.

Results: After adjustment for sex, age, and body mass index, serum apelin level was found to be not significantly different according to phenotypic frailty status (P = 0.550) and not associated with FI, grip strength, gait speed, time to complete 5 chair stands, and muscle mass (P = 0.433 to 0.982). To determine whether the association between serum apelin level and frailty has a threshold effect, we divided the participants into quartiles according to serum apelin level. However, there were no differences in terms of frailty-related parameters and the risk for frailty among the quartile groups (P = 0.248 to 0.741).

Conclusions: The serum apelin level was not associated with both phenotypic frailty and functional parameters in older adults, despite its beneficial effects against age-related physiologic decline in animal models. Further large-scale longitudinal studies are necessary to understand the definite role of circulating apelin in frailty risk assessment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12877-020-01837-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579806PMC
October 2020

MicroRNAs are critical regulators of senescence and aging in mesenchymal stem cells.

Bone 2021 01 3;142:115679. Epub 2020 Oct 3.

Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Department of Medicine, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America; Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, United States of America. Electronic address:

MicroRNAs (miRNAs) have recently come under scrutiny for their role in various age-related diseases. Similarly, cellular senescence has been linked to disease and aging. MicroRNAs and senescence likely play an intertwined role in driving these pathologic states. In this review, we present the connection between these two drivers of age-related disease concerning mesenchymal stem cells (MSCs). First, we summarize key miRNAs that are differentially expressed in MSCs and other musculoskeletal lineage cells during senescence and aging. Additionally, we also reviewed miRNAs that are regulated via traditional senescence-associated secretory phenotype (SASP) cytokines in MSC. Lastly, we summarize miRNAs that have been found to target components of the cell cycle arrest pathways inherently activated in senescence. This review attempts to highlight potential miRNA targets for regenerative medicine applications in age-related musculoskeletal disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2020.115679DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7901145PMC
January 2021

Metabolic regulation of aging and age-related disease.

Ageing Res Rev 2020 12 22;64:101175. Epub 2020 Sep 22.

Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA. Electronic address:

Inquiry into relationships between energy metabolism and brain function requires a uniquely interdisciplinary mindset, and implementation of anti-aging lifestyle strategies based on this work also involves consistent mental and physical discipline. Dr. Mark P. Mattson embodies both of these qualities, based on the breadth and depth of his work on neurobiological responses to energetic stress, and on his own diligent practice of regular exercise and caloric restriction. Dr. Mattson created a neurotrophic niche in his own laboratory, allowing trainees to grow their skills, form new connections, and eventually migrate, forming their own labs while remaining part of the extended lab family. In this historical review, we highlight Dr. Mattson's many contributions to understanding neurobiological responses to physical exercise and dietary restriction, with an emphasis on the mechanisms that may underlie neuroprotection in ageing and age-related disease. On the occasion of Dr. Mattson's retirement from the National Institute on Aging, we highlight his foundational work on metabolism and neuroplasticity by reviewing the context for these findings and considering their impact on future research on the neuroscience of aging.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.arr.2020.101175DOI Listing
December 2020

The Role of Tryptophan Metabolites in Musculoskeletal Stem Cell Aging.

Int J Mol Sci 2020 Sep 11;21(18). Epub 2020 Sep 11.

Departments of Medicine, Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912, USA.

Although aging is considered a normal process, there are cellular and molecular changes that occur with aging that may be detrimental to health. Osteoporosis is one of the most common age-related degenerative diseases, and its progression correlates with aging and decreased capacity for stem cell differentiation and proliferation in both men and women. Tryptophan metabolism through the kynurenine pathway appears to be a key factor in promoting bone-aging phenotypes, promoting bone breakdown and interfering with stem cell function and osteogenesis; however, little data is available on the impact of tryptophan metabolites downstream of kynurenine. Here we review available data on the impact of these tryptophan breakdown products on the body in general and, when available, the existing evidence of their impact on bone. A number of tryptophan metabolites (e.g., 3-hydroxykynurenine (3HKYN), kynurenic acid (KYNA) and anthranilic acid (AA)) have a detrimental effect on bone, decreasing bone mineral density (BMD) and increasing fracture risk. Other metabolites (e.g., 3-hydroxyAA, xanthurenic acid (XA), picolinic acid (PIA), quinolinic acid (QA), and NAD+) promote an increase in bone mineral density and are associated with lower fracture risk. Furthermore, the effects of other tryptophan breakdown products (e.g., serotonin) are complex, with either anabolic or catabolic actions on bone depending on their source. The mechanisms involved in the cellular actions of these tryptophan metabolites on bone are not yet fully known and will require further research as they are potential therapeutic targets. The current review is meant as a brief overview of existing English language literature on tryptophan and its metabolites and their effects on stem cells and musculoskeletal systems. The search terms used for a Medline database search were: kynurenine, mesenchymal stem cells, bone loss, tryptophan metabolism, aging, and oxidative stress.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms21186670DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555967PMC
September 2020

Therapeutic application of extracellular vesicles for musculoskeletal repair & regeneration.

Connect Tissue Res 2021 01 30;62(1):99-114. Epub 2020 Jun 30.

Medical College of Georgia, Augusta University , Augusta, GA, USA.

Traumatic musculoskeletal injuries are common in both the civilian and combat care settings. Significant barriers exist to repairing these injuries including fracture nonunion, muscle fibrosis, re-innervation, and compartment syndrome, as well as infection and inflammation. Recently, extracellular vesicles (EVs), including exosomes and microvesicles, have attracted attention in the field of musculoskeletal regeneration. These vesicles are released by different cell types and play a vital role in cell communication by delivering functional cargoes such as proteins and RNAs. Many of these cargo molecules can be utilized for repair purposes in skeletal disorders such as osteoporosis, osteogenesis imperfecta, sarcopenia, and fracture healing. There are, however, some challenges to overcome in order to advance the successful application of these vesicles in the therapeutic setting. These include large-scale production and isolation of exosomes, long-term storage, stability, and strategies for tissue-specific targeting and delivery. This paper reviews the general characteristics of exosomes along with their physiological roles and contribution to the pathogenesis of musculoskeletal diseases. We also highlight new findings on the use of synthetic exosomes to overcome the limitations of native exosomes in treating musculoskeletal injuries and disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/03008207.2020.1781102DOI Listing
January 2021

The Senolytic Drug Navitoclax (ABT-263) Causes Trabecular Bone Loss and Impaired Osteoprogenitor Function in Aged Mice.

Front Cell Dev Biol 2020 20;8:354. Epub 2020 May 20.

Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States.

Senescence is a cellular defense mechanism that helps cells prevent acquired damage, but chronic senescence, as in aging, can contribute to the development of age-related tissue dysfunction and disease. Previous studies clearly show that removal of senescent cells can help prevent tissue dysfunction and extend healthspan during aging. Senescence increases with age in the skeletal system, and selective depletion of senescent cells or inhibition of their senescence-associated secretory phenotype (SASP) has been reported to maintain or improve bone mass in aged mice. This suggests that promoting the selective removal of senescent cells, via the use of senolytic agents, can be beneficial in the treatment of aging-related bone loss and osteoporosis. Navitoclax (also known as ABT-263) is a chemotherapeutic drug reported to effectively clear senescent hematopoietic stem cells, muscle stem cells, and mesenchymal stromal cells in previous studies, but its effects on bone mass had not yet been reported. Therefore, the purpose of this study was to assess the effects of short-term navitoclax treatment on bone mass and osteoprogenitor function in old mice. Aged (24 month old) male and female mice were treated with navitoclax (50 mg/kg body mass daily) for 2 weeks. Surprisingly, despite decreasing senescent cell burden, navitoclax treatment decreased trabecular bone volume fraction in aged female and male mice (-60.1% females, -45.6% males), and BMSC-derived osteoblasts from the navitoclax treated mice were impaired in their ability to produce a mineralized matrix (-88% females, -83% males). Moreover, administration of navitoclax decreased BMSC colony formation and calcified matrix production by aged BMSC-derived osteoblasts, similar to effects seen with the primary BMSC from the animals treated . Navitoclax also significantly increased metrics of cytotoxicity in both male and female osteogenic cultures (+1.0 to +11.3 fold). Taken together, these results suggest a potentially harmful effect of navitoclax on skeletal-lineage cells that should be explored further to definitively assess navitoclax's potential (or risk) as a therapeutic agent for combatting age-related musculoskeletal dysfunction and bone loss.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fcell.2020.00354DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7252306PMC
May 2020

Age-related increase of kynurenine enhances miR29b-1-5p to decrease both CXCL12 signaling and the epigenetic enzyme Hdac3 in bone marrow stromal cells.

Bone Rep 2020 Jun 23;12:100270. Epub 2020 Apr 23.

Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America.

Mechanisms leading to age-related reductions in bone formation and subsequent osteoporosis are still incompletely understood. We recently demonstrated that kynurenine (KYN), a tryptophan metabolite, accumulates in serum of aged mice and induces bone loss. Here, we report on novel mechanisms underlying KYN's detrimental effect on bone aging. We show that KYN is increased with aging in murine bone marrow mesenchymal stem cells (BMSCs). KYN reduces bone formation via modulating levels of CXCL12 and its receptors as well as histone deacetylase 3 (Hdac3). BMSCs responded to KYN by significantly decreasing mRNA expression levels of CXCL12 and its cognate receptors, CXCR4 and ACKR3, as well as downregulating osteogenic gene RUNX2 expression, resulting in a significant inhibition in BMSCs osteogenic differentiation. KYN's effects on these targets occur by increasing regulatory miRNAs that target osteogenesis, specifically miR29b-1-5p. Thus, KYN significantly upregulated the anti-osteogenic miRNA miR29b-1-5p in BMSCs, mimicking the up-regulation of miR-29b-1-5p in human and murine BMSCs with age. Direct inhibition of miR29b-1-5p by antagomirs rescued CXCL12 protein levels downregulated by KYN, while a miR29b-1-5p mimic further decreased CXCL12 levels. KYN also significantly downregulated mRNA levels of Hdac3, a target of miR-29b-1-5p, as well as its cofactor NCoR1. KYN is a ligand for the aryl hydrocarbon receptor (AhR). We hypothesized that AhR mediates KYN's effects in BMSCs. Indeed, AhR inhibitors (CH-223191 and 3',4'-dimethoxyflavone [DMF]) partially rescued secreted CXCL12 protein levels in BMSCs treated with KYN. Importantly, we found that treatment with CXCL12, or transfection with an miR29b-1-5p antagomir, downregulated the AhR mRNA level, while transfection with miR29b-1-5p mimic significantly upregulated its level. Further, CXCL12 treatment downregulated IDO, an enzyme responsible for generating KYN. Our findings reveal novel molecular pathways involved in KYN's age-associated effects in the bone microenvironment that may be useful translational targets for treating osteoporosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bonr.2020.100270DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7210406PMC
June 2020

Freeze-Dried Extracellular Vesicles From Adipose-Derived Stem Cells Prevent Hypoxia-Induced Muscle Cell Injury.

Front Cell Dev Biol 2020 20;8:181. Epub 2020 Mar 20.

Medical College of Georgia, Augusta University, Augusta, GA, United States.

Cellular therapies have tremendous potential for the successful treatment of major extremity wounds in the combat setting, however, the challenges associated with transplanting stem cells in the prolonged field care (PFC) environment are a critical barrier to progress in treating such injuries. These challenges include not only production and storage but also transport and handling issues. Our goal is to develop a new strategy utilizing extracellular vesicles (EVs) secreted by stem cells that can resolve many of these issues and prevent ischemic tissue injury. While EVs can be preserved by freezing or lyophilization, both processes result in decrease in their bioactivity. Here, we describe optimized procedures for EVs production, isolation, and lyophilization from primary human adipose-derived stem cells (hADSCs). We compared two isolation approaches that were ultrafiltration (UF) using a tangential fluid filtration (TFF) system and differential ultracentrifugation (UC). We also optimized EVs lyophilization in conjunction with trehalose and polyvinylpyrrolidone 40 (PVP40) as lyoprotectants. Bioactivity of EVs was assessed based on reversal of hypoxia-induced muscle cell injury. To this end, primary human myoblasts were subjected to hypoxic conditions for 6 h, and then treated with hADSC-derived EVs at a concentration of 50 μg/mL. Subsequently, muscle cell viability and toxicity were evaluated using MTS and LDH assays, respectively. Overall, nanoparticle tracking data indicated that UF/TFF yields threefold more particles than UC. Lyophilization of EVs resulted in a significantly reduced number of particles, which could be attenuated by adding lyoprotections to the freeze-drying solution. Furthermore, EVs isolated by UF/TFF and freeze-dried in the presence of trehalose significantly increased viability ( < 0.0193). Taken together, our findings suggest that the isolation and preservation methods presented in this study may enhance therapeutic applications of EVs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fcell.2020.00181DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099601PMC
March 2020

Special issue: The kynurenine pathway in aging.

Exp Gerontol 2020 Mar 3;134:110895. Epub 2020 Mar 3.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2020.110895DOI Listing
March 2020

Picolinic acid, a tryptophan oxidation product, does not impact bone mineral density but increases marrow adiposity.

Exp Gerontol 2020 05 20;133:110885. Epub 2020 Feb 20.

Center for Healthy Aging, Augusta University, United States of America; Department of Medicine, Augusta University, United States of America; Department of Neuroscience and Regenerative Medicine, Augusta University, United States of America; Department of Orthopaedic Surgery, Augusta University, United States of America; Department of Cellular Biology and Anatomy, Augusta University, United States of America. Electronic address:

Tryptophan is an essential amino acid catabolized initially to kynurenine (kyn), an immunomodulatory metabolite that we have previously shown to promote bone loss. Kyn levels increase with aging and have also been associated with neurodegenerative disorders. Picolinic acid (PA) is another tryptophan metabolite downstream of kyn. However, in contrast to kyn, PA is reported to be neuroprotective and further, to promote osteogenesis in vitro. Thus, we hypothesized that PA might be osteoprotective in vivo. In an IACUC-approved protocol, we fed PA to aged (23-month-old) C57BL/6 mice for eight weeks. In an effort to determine potential interactions of PA with dietary protein we also fed PA in a low-protein diet (8%). The mice were divided into four groups: Control (18% dietary protein), +PA (700 ppm); Low-protein (8%), +PA (700 ppm). The PA feedings had no impact on mouse weight, body composition or bone density. At sacrifice bone and stem cells were collected for analysis, including μCT and RT-qPCR. Addition of PA to the diet had no impact on trabecular bone parameters. However, marrow adiposity was significantly increased in PA-fed mice, and in bone marrow stromal cells isolated from these mice increases in the expression of the lipid storage genes, Plin1 and Cidec, were observed. Thus, as a downstream metabolite of kyn, PA no longer showed kyn's detrimental effects on bone but instead appears to impact energy balance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2020.110885DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065047PMC
May 2020

Deletion of PPARγ in Mesenchymal Lineage Cells Protects Against Aging-Induced Cortical Bone Loss in Mice.

J Gerontol A Biol Sci Med Sci 2020 04;75(5):826-834

Center for Healthy Aging, Augusta University, Georgia.

Bone loss in aging is linked with chronic low-grade inflammation and the accumulation of marrowfat in animals and humans. Peroxisome proliferator-activated receptor gamma (PPARγ), an adipogenic regulator, plays key roles in these biological processes. However, studies of the roles of PPARγ in age-related bone loss and inflammation are lacking. We hypothesized that deletion of PPARγ in bone marrow mesenchymal lineage cells would reduce bone loss with aging, potentially through a reduction in fat-generated inflammatory responses and an increase in osteoblastic activity. In the present study, we show that mice deficient of PPARγ in Dermo1-expressing mesenchymal lineage cells (Dermo1-Cre:PPARγ fl/fl) have reduced fat mass and increased cortical bone thickness but that deficiency of PPARγ had limited effect on protection of trabecular bone with aging as demonstrated by dual-energy X-ray absorptiometry, µCT, and histomorphometric analyses. Conditional knockout of PPARγ reduced serum concentrations of adipokines, including adiponectin, resistin, and leptin, and reduced marrow stromal cell expression levels of inflammation-related genes. Inflammation genes involved in the interferon signaling pathway were reduced the most. These results demonstrate that disruption of the master adipogenic regulator, PPARγ, has a certain protective effect on aging-induced bone loss, suggesting that regulation of adipose function and modulation of interferon signaling are among the key mechanisms by which PPARγ regulates bone homeostasis during aging process.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/gerona/glaa049DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7164529PMC
April 2020

Kynurenine suppresses osteoblastic cell energetics in vitro and osteoblast numbers in vivo.

Exp Gerontol 2020 02 17;130:110818. Epub 2019 Dec 17.

Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA. Electronic address:

Aging is a progressive process associated with declining tissue function over time. Kynurenine, an oxidized metabolite of the essential amino acid tryptophan that increases in abundance with age, drives cellular processes of aging and dysfunction in many tissues, and recent work has focused on understanding the pathways involved in the harmful effects of kynurenine on bone. In this study, we sought to investigate the effects of controlled kynurenine administration on osteoblast bioenergetics, in vivo osteoblast abundance, and marrow fat accumulation. Additionally, as an extension of earlier studies with dietary administration of kynurenine, we investigated the effects of kynurenine on Hdac3 and NCoR1 expression and enzymatic deacetylase activity as potential mechanistic contributors to the effects of kynurenine on osteoblasts. Kynurenine administration suppressed cellular metabolism in osteoblasts at least in part through impaired mitochondrial respiration, and suppressed osteoblastic numbers in vivo with no concurrent effects on marrow adiposity. Deleterious effects of kynurenine treatment on osteoblasts were more pronounced in female models as compared to males. However, kynurenine treatment did not inhibit Hdac3's enzymatic deacetylase activity nor its repression of downstream glucocorticoid signaling. As such, future work will be necessary to determine the mechanisms by which increased kynurenine contributes to aging bone bioenergetics. The current study provides novel further support for the idea that kynurenine contributes to impaired osteoblastic function, and suggests that impaired matrix production by kynurenine-affected osteoblasts is attributed in part to impaired osteoblastic bioenergetics. As circulating kynurenine levels in increase with age, and human bone density inversely correlates with the serum kynurenine to tryptophan ratio, these mechanisms may have important relevance in the etiology and pathogenesis of osteoporosis in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2019.110818DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7003726PMC
February 2020

Accumulation of kynurenine elevates oxidative stress and alters microRNA profile in human bone marrow stromal cells.

Exp Gerontol 2020 02 30;130:110800. Epub 2019 Nov 30.

Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Department of Cell biology and Anatomy, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America. Electronic address:

Kynurenine, a metabolite of tryptophan breakdown, has been shown to increase with age, and plays a vital role in a number of age-related pathophysiological changes, including bone loss. Accumulation of kynurenine in bone marrow stromal cells (BMSCs) has been associated with a decrease in cell proliferation and differentiation, though the exact mechanism by which kynurenine mediates these changes is poorly understood. MiRNAs have been shown to regulate BMSC function, and accumulation of kynurenine may alter the miRNA expression profile of BMSCs. The aim of this study was to identify differentially expressed miRNAs in human BMSCs in response to treatment with kynurenine, and correlate miRNAs function in BMSCs biology through bioinformatics analysis. Human BMSCs were cultured and treated with and without kynurenine, and subsequent miRNA isolation was performed. MiRNA array was performed to identify differentially expressed miRNA. Microarray analysis identified 50 up-regulated, and 36 down-regulated miRNAs in kynurenine-treated BMSC cultures. Differentially expressed miRNA included miR-1281, miR-330-3p, let-7f-5p, and miR-493-5p, which are important for BMSC proliferation and differentiation. KEGG analysis found up-regulated miRNA targeting glutathione metabolism, a pathway critical for removing oxidative species. Our data support that the kynurenine dependent degenerative effect is partially due to changes in the miRNA profile of BMSCs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2019.110800DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6998036PMC
February 2020

Kynurenine signaling through the aryl hydrocarbon receptor: Implications for aging and healthspan.

Exp Gerontol 2020 02 28;130:110797. Epub 2019 Nov 28.

Medical College of Georgia, Augusta University, Augusta, GA 30912, USA. Electronic address:

The tryptophan metabolite kynurenine increases with aging and inflammation, and appears to contribute directly to the development and progression of several age-related conditions. Kynurenine is now known to signal through the aryl hydrocarbon receptor (Ahr) to modulate levels of reactive oxygen species (ROS). The Ahr promoter region contains several sites for NF-kB binding, indicating that inflammation is a key factor modulating Ahr expression. Furthermore, kynurenine activation of Ahr is observed to stimulate expression of the enzyme IDO1, which generates kynurenine by degrading tryptophan, representing a positive feedback loop that may link inflammation with ROS production. On the other hand, the antioxidant system-inducing transcription factor Nrf2 can be stimulated by Ahr, and Nrf2 can itself activate Ahr expression. The balance between pro- and antioxidant functions of Ahr mediated by kynurenine may therefore regulate healthy versus unhealthy aging in different tissues and organ systems. Potential therapeutic approaches to target this pathway include exercise to alter kynurenine production or molecules such as metformin or resveratrol that may suppress Ahr activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2019.110797DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7899131PMC
February 2020

Decreased pericellular matrix production and selection for enhanced cell membrane repair may impair osteocyte responses to mechanical loading in the aging skeleton.

Aging Cell 2020 01 19;19(1):e13056. Epub 2019 Nov 19.

Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA.

Transient plasma membrane disruptions (PMD) occur in osteocytes with in vitro and in vivo loading, initiating mechanotransduction. The goal here was to determine whether osteocyte PMD formation or repair is affected by aging. Osteocytes from old (24 months) mice developed fewer PMD (-76% females, -54% males) from fluid shear than young (3 months) mice, and old mice developed fewer osteocyte PMD (-51%) during treadmill running. This was due at least in part to decreased pericellular matrix production, as studies revealed that pericellular matrix is integral to formation of osteocyte PMD, and aged osteocytes produced less pericellular matrix (-55%). Surprisingly, osteocyte PMD repair rate was faster (+25% females, +26% males) in osteocytes from old mice, and calcium wave propagation to adjacent nonwounded osteocytes was blunted, consistent with impaired mechanotransduction downstream of PMD in osteocytes with fast PMD repair in previous studies. Inducing PMD via fluid flow in young osteocytes in the presence of oxidative stress decreased postwounding cell survival and promoted accelerated PMD repair in surviving cells, suggesting selective loss of slower-repairing osteocytes. Therefore, as oxidative stress increases during aging, slower-repairing osteocytes may be unable to successfully repair PMD, leading to slower-repairing osteocyte death in favor of faster-repairing osteocyte survival. Since PMD are an important initiator of mechanotransduction, age-related decreases in pericellular matrix and loss of slower-repairing osteocytes may impair the ability of bone to properly respond to mechanical loading with bone formation. These data suggest that PMD formation and repair mechanisms represent new targets for improving bone mechanosensitivity with aging.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/acel.13056DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974724PMC
January 2020

Kynurenine, a Tryptophan Metabolite That Increases with Age, Induces Muscle Atrophy and Lipid Peroxidation.

Oxid Med Cell Longev 2019 13;2019:9894238. Epub 2019 Oct 13.

Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.

The cellular and molecular mechanisms underlying loss of muscle mass with age (sarcopenia) are not well-understood; however, heterochronic parabiosis experiments show that circulating factors are likely to play a role. Kynurenine (KYN) is a circulating tryptophan metabolite that is known to increase with age and is a ligand of the aryl hydrocarbon receptor (Ahr). Here, we tested the hypothesis that KYN activation of Ahr plays a role in muscle loss with aging. Results indicate that KYN treatment of mouse and human myoblasts increased levels of reactive oxygen species (ROS) 2-fold and KYN treatment reduced muscle size and strength and increased muscle lipid peroxidation in young mice. PCR array data indicate that muscle fiber size reduction with KYN treatment reduces protein synthesis markers whereas ubiquitin ligase gene expression is not significantly increased. KYN is generated by the enzyme indoleamine 2,3-dioxygenase (IDO), and aged mice treated with the IDO inhibitor 1-methyl-D-tryptophan showed an increase in muscle fiber size and muscle strength. Small-molecule inhibition of Ahr , and Ahr knockout , did not prevent KYN-induced increases in ROS, suggesting that KYN can directly increase ROS independent of Ahr activation. Protein analysis identified very long-chain acyl-CoA dehydrogenase as a factor activated by KYN that may increase ROS and lipid peroxidation. Our data suggest that IDO inhibition may represent a novel therapeutic approach for the prevention of sarcopenia and possibly other age-associated conditions associated with KYN accumulation such as bone loss and neurodegeneration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2019/9894238DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6815546PMC
May 2020

Stromal cell-derived factor-1 as a potential therapeutic target for osteoarthritis and rheumatoid arthritis.

Ther Adv Chronic Dis 2019 24;10:2040622319882531. Epub 2019 Oct 24.

Department of Orthopedic Surgery, Augusta University, 1459 Laney Walker, Augusta, GA, 30904, USA.

With age, joints become subject to chronic inflammatory processes that lead to degeneration of articular cartilage. Although multifactorial, cytokines have been shown to play a role in the pathogenesis of these chronic disease states. Stromal cell-derived factor 1 (SDF-1) is a chemokine that has been shown to be active in homeostatic mechanisms and developmental processes throughout the body, such as endochondral bone formation. SDF-1 plays a role in the transition from cartilage to bone. Although it has been shown to be a factor in normal development, it has also been shown to involve in the pathogenesis of rheumatoid arthritis (RA) and osteoarthritis (OA). In RA, SDF-1 has been shown to stimulate the recruitment of proinflammatory cells, as well as osteoclasts to the synovium, aiding in the facilitation of synovial degradation. Similarly, in OA, SDF-1 has been shown to regulate key proteins involved in the degradation of the cartilage of the joint. Because of its role in degenerative joint disease, SDF-1 has been investigated as a potential therapeutic target. Animal studies have been employing SDF-1 inhibitors, such as AMD3100 and T140, to study their effects on attenuating degenerative joint disease. These studies have shown promising results in slowing the progression of cartilage degradation and could potentially be used as therapeutic target for humans OA and RA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/2040622319882531DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6820172PMC
October 2019

Elevated ceramides 18:0 and 24:1 with aging are associated with hip fracture risk through increased bone resorption.

Aging (Albany NY) 2019 11 1;11(21):9388-9404. Epub 2019 Nov 1.

Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.

We assessed whether circulating ceramides, which play a role in a number of degenerative changes with aging, significantly differed according to fragility hip fracture (HF) status. We also performed a human study using bone marrow (BM) aspirates, directly reflecting the bone microenvironment, in addition to experiments. Peripheral blood and BM samples were simultaneously collected from 74 patients 65 years or older at hip surgery for either HF ( = 28) or for other causes ( = 46). Ceramides were measured by liquid chromatography-tandem mass spectrometry. Age was correlated positively with circulating C16:0, C18:0, and C24:1 ceramide levels. Patients with fragility HF had 21.3%, 49.5%, 34.3%, and 22.5% higher plasma C16:0, C18:0, C18:1, and C24:1 ceramide levels, respectively, than those without HF. Higher C16:0, C18:0, C18:1, and C24:1 ceramide levels were positively related to bone resorption markers in both blood and BM samples. Furthermore, studies showed that C18:0 and C24:1 ceramides directly increased osteoclastogenesis, bone resorption, and expression levels of osteoclast differentiation markers. These results suggested that the association of increased ceramides, especially C18:0 and C24:1, with adverse bone phenotypes in elderly people could be explained mainly by the increase in osteoclastogenesis and bone resorption.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/aging.102389DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874435PMC
November 2019

MicroRNA-141-3p Negatively Modulates SDF-1 Expression in Age-Dependent Pathophysiology of Human and Murine Bone Marrow Stromal Cells.

J Gerontol A Biol Sci Med Sci 2019 08;74(9):1368-1374

Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Georgia.

Stromal cell-derived factor-1 (SDF-1 or CXCL12) is a cytokine secreted by cells including bone marrow stromal cells (BMSCs). SDF-1 plays a vital role in BMSC migration, survival, and differentiation. Our group previously reported the role of SDF-1 in osteogenic differentiation in vitro and bone formation in vivo; however, our understanding of the post-transcriptional regulatory mechanism of SDF-1 remains poor. MicroRNAs are small noncoding RNAs that post-transcriptionally regulate the messenger RNAs (mRNAs) of protein-coding genes. In this study, we aimed to investigate the impact of miR-141-3p on SDF-1 expression in BMSCs and its importance in the aging bone marrow (BM) microenvironment. Our data demonstrated that murine and human BMSCs expressed miR-141-3p that repressed SDF-1 gene expression at the functional level (luciferase reporter assay) by targeting the 3'-untranslated region of mRNA. We also found that transfection of miR-141-3p decreased osteogenic markers in human BMSCs. Our results demonstrate that miR-141-3p expression increases with age, while SDF-1 decreases in both the human and mouse BM niche. Taken together, these results support that miR-141-3p is a novel regulator of SDF-1 in bone cells and plays an important role in the age-dependent pathophysiology of murine and human BM niche.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/gerona/gly186DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696713PMC
August 2019

The effects of myokines on osteoclasts and osteoblasts.

Biochem Biophys Res Commun 2019 10 5;517(4):749-754. Epub 2019 Aug 5.

Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea. Electronic address:

Recently, muscle has received much attention as an endocrine organ regulating other biological targets, including the pancreas, liver, and adipose tissue. Although there is a possibility that muscle-secreting factors biochemically affect bone metabolism in a paracrine manner, the net effects of myokines on the biology of osteoclasts and osteoblasts, particularly on bone mass in vivo, have not yet been thoroughly investigated. Therefore, we performed in vitro as well as animal experiments using conditioned media (CM) collected from C2C12 myoblast and myotube cultures to better understand the interactions between muscle and bone. Compared with non-CM (i.e., control) and myoblast CM, myotube CM markedly inhibited in vitro bone resorption through the suppression of osteoclast differentiation and resorptive activity of individual osteoclasts. Consistently, the expressions of osteoclast differentiation markers, such as tartrate-resistant acid phosphatase (Trap) and calcitonin receptor (Ctr), decreased with myotube CM. Myotube CM significantly stimulated preosteoblast viability and migration and reduced apoptosis, thereby resulting in an increase in calvaria bone formation. Importantly, systemic treatment with myotube CM for 4 weeks increased bone per tissue volume by 30.7% and 19.6% compared with control and myoblast CM, respectively. These results support the hypothesis that muscle plays beneficial roles in bone health via secretion of anabolic factors, in addition to mechanical stimuli, and importantly indicate that muscle-derived factors can be potential therapeutic targets against metabolic bone diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2019.07.127DOI Listing
October 2019

The glucocorticoid receptor in osteoprogenitors regulates bone mass and marrow fat.

J Endocrinol 2019 07 1. Epub 2019 Jul 1.

M McGee-Lawrence, Cellular Biology and Anatomy, Augusta University, Augusta, United States.

Excess fat within bone marrow is associated with lower bone density. Metabolic stressors such as chronic caloric restriction (CR) can exacerbate marrow adiposity, and increased glucocorticoid signaling and adrenergic signaling are implicated in this phenotype. The current study tested the role of glucocorticoid signaling in CR-induced stress by conditionally deleting the glucocorticoid receptor (GR) in bone marrow osteoprogenitors (Osx1-Cre) of mice subjected to CR and ad libitum diets. Conditional knockout of the GR (GR-CKO) reduced cortical and trabecular bone mass as compared to wildtype (WT) mice under both ad libitum and CR conditions. No interaction was detected between genotype and diet, suggesting that the GR is not required for CR-induced skeletal changes. The lower bone mass in GR-CKO mice, and the further suppression of bone by CR, resulted from suppressed bone formation. Interestingly, treatment with the -adrenergic receptor antagonist propranolol mildly but selectively improved metrics of cortical bone mass in GR-CKO mice during CR, suggesting interaction between adrenergic and glucocorticoid signaling pathways that affects cortical bone. GR-CKO mice dramatically increased marrow fat under both ad libitum and CR-fed conditions, and surprisingly propranolol treatment was unable to rescue CR-induced marrow fat in either WT or GR-CKO mice. Additionally, serum corticosterone levels were selectively elevated in GR-CKO mice with CR, suggesting the possibility of bone-hypothalamus-pituitary-adrenal crosstalk during metabolic stress. This work highlights the complexities of glucocorticoid and β-adrenergic signaling in stress-induced changes in bone mass, and the importance of GR function in suppressing marrow adipogenesis while maintaining healthy bone mass.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1530/JOE-19-0230DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938567PMC
July 2019

Stromal cell-derived factor-1 (CXCL12) and its role in bone and muscle biology.

Cytokine 2019 11 20;123:154783. Epub 2019 Jul 20.

Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States. Electronic address:

Musculoskeletal disorders are the leading cause of disability worldwide; two of the most prevalent of which are osteoporosis and sarcopenia. Each affect millions in the aging population across the world and the associated morbidity and mortality contributes to billions of dollars in annual healthcare cost. Thus, it is important to better understand the underlying pathologic mechanisms of the disease process. Regulatory chemokine, CXCL12, and its receptor, CXCR4, are recognized to be essential in the recruitment, localization, maintenance, development and differentiation of progenitor stem cells of the musculoskeletal system. CXCL12 signaling results in the development and functional ability of osteoblasts, osteoclasts, satellite cells and myoblasts critical to maintaining musculoskeletal homeostasis. Interestingly, one suggested pathologic mechanism of osteoporosis and sarcopenia is a decline in the regenerative capacity of musculoskeletal progenitor stem cells. Thus, because CXCL12 is critical to progenitor function, a disruption in the CXCL12 signaling axis might play a distinct role in these pathological processes. Therefore, in this article, we perform a review of CXCL12, its physiologic and pathologic function in bone and muscle, and potential targets for therapeutic development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cyto.2019.154783DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6948927PMC
November 2019
-->