Publications by authors named "Mark Servos"

94 Publications

Exposure to wastewater effluent disrupts hypoxia responses in killifish (Fundulus heteroclitus).

Environ Pollut 2021 Sep 17;284:117373. Epub 2021 May 17.

Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada. Electronic address:

Hypoxia (low oxygen) often occurs in aquatic ecosystems that receive effluent from municipal wastewater treatment plants (WWTP). The combination of hypoxia and WWTP effluent could impair fish health, because WWTP effluent contains multiple contaminants that could disrupt the physiological pathways fish use to cope with hypoxia, but the interactive effects of these stressors on fish physiology are poorly understood. We have examined this issue by exposing mummichog killifish (Fundulus heteroclitus) to hypoxia (5 and 2 kPa O) and/or 100% WWTP effluent for 21 days in a full factorial design. We then measured hypoxia tolerance, whole-animal metabolism, gill morphology, haematology, and tissue metabolites. In clean water, killifish responded to chronic hypoxia with improvements in hypoxia tolerance, as reflected by increases in time to loss of equilibrium at 0.5 kPa (t). These improvements occurred in association with increases in the exposed surface of gill lamellae that resulted from a regression of interlamellar cell mass (ILCM). Concurrent exposure to wastewater attenuated the increases in t and gill remodeling in chronic hypoxia, and nearly depleted brain glycogen stores. Therefore, exposure to WWTP effluent can disrupt the physiological mechanisms fish use to cope with chronic hypoxia and impair hypoxia tolerance. Our research suggests that the combination of stressors near WWTPs can have interactive effects on the physiology and health of fish.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2021.117373DOI Listing
September 2021

A 30-Year Study of Impacts, Recovery, and Development of Critical Effect Sizes for Endocrine Disruption in White Sucker () Exposed to Bleached-Kraft Pulp Mill Effluent at Jackfish Bay, Ontario, Canada.

Front Endocrinol (Lausanne) 2021 22;12:664157. Epub 2021 Apr 22.

Biological Sciences, University of Calgary, Calgary, AB, Canada.

Jackfish Bay is an isolated bay on the north shore of Lake Superior, Canada that has received effluent from a large bleached-kraft pulp mill since the 1940s. Studies conducted in the late 1980s found evidence of reductions in sex steroid hormone levels in multiple fish species living in the Bay, and increased growth, condition and relative liver weights, with a reduction in internal fat storage, reduced gonadal sizes, delayed sexual maturation, and altered levels of circulating sex steroid hormones in white sucker (). These early studies provided some of the first pieces of evidence of endocrine disruption in wild animals. Studies on white sucker have continued at Jackfish Bay, monitoring fish health after the installation of secondary waste treatment (1989), changes in the pulp bleaching process (1990s), during facility maintenance shutdowns and during a series of facility closures associated with changing ownership (2000s), and were carried through to 2019 resulting in a 30-year study of fish health impacts, endocrine disruption, chemical exposure, and ecosystem recovery. The objective of the present study was to summarize and understand more than 75 physiological, endocrine, chemical and whole organism endpoints that have been studied providing important context for the complexity of endocrine responses, species differences, and challenges with extrapolation. Differences in body size, liver size, gonad size and condition persist, although changes in liver and gonad indices are much smaller than in the early years. Population modeling of the initial reproductive alterations predicted a 30% reduction in the population size, however with improvements over the last couple of decades those population impacts improved considerably. Reflection on these 30 years of detailed studies, on environmental conditions, physiological, and whole organism endpoints, gives insight into the complexity of endocrine responses to environmental change and mitigation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fendo.2021.664157DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8101260PMC
April 2021

Endocrine Disruptor Impacts on Fish From Chile: The Influence of Wastewaters.

Front Endocrinol (Lausanne) 2021 25;12:611281. Epub 2021 Mar 25.

Biological Sciences, University of Calgary, Calgary, AB, Canada.

Industrial wastewaters and urban discharges contain complex mixtures of chemicals capable of impacting reproductive performance in freshwater fish, called endocrine-disrupting compounds (EDCs). In Chile, the issue was highlighted by our group beginning over 15 years ago, by analyzing the impacts of pulp and paper mill effluents (PPME) in the Biobio, Itata, and Cruces River basins. All of the rivers studied are important freshwater ecosystems located in the Mediterranean region of Central Chile, each with a unique fish biodiversity. Sequentially, we developed a strategy based on laboratory assays, semicontrolled-field experiments (e.g., caging) and wild fish population assessments to explore the issue of reproductive impacts on both introduced and native fish in Chile. The integration of watershed, field, and laboratory studies was effective at understanding the endocrine responses in Chilean freshwater systems. The studies demonstrated that regardless of the type of treatment, pulp mill effluents can contain compounds capable of impacting endocrine systems. Urban wastewater treatment plant effluents (WWTP) were also investigated using the same integrated strategy. Although not directly compared, PPME and WWTP effluent seem to cause similar estrogenic effects in fish after waterborne exposure, with differing intensities. This body of work underscores the urgent need for further studies on the basic biology of Chilean native fish species, and an improved understanding on reproductive development and variability across Chilean ecosystems. The lack of knowledge of the ontogeny of Chilean fish, especially maturation and sexual development, with an emphasis on associated habitats and landscapes, are impediment factors for their conservation and protection against the threat of EDCs. The assessment of effects on native species in the receiving environment is critical for supporting and designing protective regulations and remediation strategies, and for conserving the unique Chilean fish biodiversity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fendo.2021.611281DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8027499PMC
March 2021

High Throughput Sequencing of MicroRNA in Rainbow Trout Plasma, Mucus, and Surrounding Water Following Acute Stress.

Front Physiol 2020 13;11:588313. Epub 2021 Jan 13.

Department of Biology, University of Waterloo, Waterloo, ON, Canada.

Circulating plasma microRNAs (miRNAs) are well established as biomarkers of several diseases in humans and have recently been used as indicators of environmental exposures in fish. However, the role of plasma miRNAs in regulating acute stress responses in fish is largely unknown. Tissue and plasma miRNAs have recently been associated with excreted miRNAs; however, external miRNAs have never been measured in fish. The objective of this study was to identify the altered plasma miRNAs in response to acute stress in rainbow trout (), as well as altered miRNAs in fish epidermal mucus and the surrounding ambient water. Small RNA was extracted and sequenced from plasma, mucus, and water collected from rainbow trout pre- and 1 h-post a 3-min air stressor. Following small RNA-Seq and pathway analysis, we identified differentially expressed plasma miRNAs that targeted biosynthetic, degradation, and metabolic pathways. We successfully isolated miRNA from trout mucus and the surrounding water and detected differences in miRNA expression 1-h post air stress. The expressed miRNA profiles in mucus and water were different from the altered plasma miRNA profile, which indicated that the plasma miRNA response was not associated with or immediately reflected in external samples, which was further validated through qPCR. This research expands understanding of the role of plasma miRNA in the acute stress response of fish and is the first report of successful isolation and profiling of miRNA from fish mucus or samples of ambient water. Measurements of miRNA from plasma, mucus, or water can be further studied and have potential to be applied as non-lethal indicators of acute stress in fish.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphys.2020.588313DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7838646PMC
January 2021

Catching a resurgence: Increase in SARS-CoV-2 viral RNA identified in wastewater 48 h before COVID-19 clinical tests and 96 h before hospitalizations.

Sci Total Environ 2021 May 22;770:145319. Epub 2021 Jan 22.

Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada. Electronic address:

Curtailing the Spring 2020 COVID-19 surge required sweeping and stringent interventions by governments across the world. Wastewater-based COVID-19 epidemiology programs have been initiated in many countries to provide public health agencies with a complementary disease tracking metric and non-discriminating surveillance tool. However, their efficacy in prospectively capturing resurgences following a period of low prevalence is unclear. In this study, the SARS-CoV-2 viral signal was measured in primary clarified sludge harvested every two days at the City of Ottawa's water resource recovery facility during the summer of 2020, when clinical testing recorded daily percent positivity below 1%. In late July, increases of >400% in normalized SARS-CoV-2 RNA signal in wastewater were identified 48 h prior to reported >300% increases in positive cases that were retrospectively attributed to community-acquired infections. During this resurgence period, SARS-CoV-2 RNA signal in wastewater preceded the reported >160% increase in community hospitalizations by approximately 96 h. This study supports wastewater-based COVID-19 surveillance of populations in augmenting the efficacy of diagnostic testing, which can suffer from sampling biases or timely reporting as in the case of hospitalization census.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.145319DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826013PMC
May 2021

Municipal wastewater as an ecological trap: Effects on fish communities across seasons.

Sci Total Environ 2021 Mar 1;759:143430. Epub 2020 Nov 1.

Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada. Electronic address:

Municipal wastewater treatment plant (WWTP) effluents are a ubiquitous source of contamination whose impacts on fish and other aquatic organisms span across multiple levels of biological organization. Despite this, few studies have addressed the impacts of WWTP effluents on fish communities, especially during the winter-a season seldom studied. Here, we assessed the impacts of wastewater on fish community compositions and various water quality parameters during the summer and winter along two effluent gradients in Hamilton Harbour, an International Joint Commission Area of Concern in Hamilton, Canada. We found that fish abundance, species richness, and species diversity were generally highest in sites closest to the WWTP outfalls, but only significantly so in the winter. Fish community compositions differed greatly along the effluent gradients, with sites closest and farthest from the outfalls being the most dissimilar. Furthermore, the concentrations of numerous contaminants of emerging concern (CECs) in the final treated effluent were highest during the winter. Water quality of sites closer to the outfalls was poorer than at sites farther away, especially during the winter. We also demonstrated that WWTPs can significantly alter the thermal profile of effluent-receiving environments, increasing temperature by as much as ~9 °C during the winter. Our results suggest that wastewater plumes may act as ecological traps in winter, whereby fish are attracted to the favourable temperatures near WWTPs and are thus exposed to higher concentrations of CECs. This study highlights the importance of winter research as a key predictor in further understanding the impacts of wastewater contamination in aquatic ecosystems.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.143430DOI Listing
March 2021

Quantitative analysis of SARS-CoV-2 RNA from wastewater solids in communities with low COVID-19 incidence and prevalence.

Water Res 2021 Jan 23;188:116560. Epub 2020 Oct 23.

Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada. Electronic address:

In the absence of an effective vaccine to prevent COVID-19 it is important to be able to track community infections to inform public health interventions aimed at reducing the spread and therefore reduce pressures on health-care, improve health outcomes and reduce economic uncertainty. Wastewater surveillance has rapidly emerged as a potential tool to effectively monitor community infections through measuring trends of RNA signal in wastewater systems. In this study SARS-CoV-2 viral RNA N1 and N2 gene regions are quantified in solids collected from influent post grit solids (PGS) and primary clarified sludge (PCS) in two water resource recovery facilities (WRRF) serving Canada's national capital region, i.e., the City of Ottawa, ON (pop. ≈ 1.1M) and the City of Gatineau, QC (pop. ≈ 280K). PCS samples show signal inhibition using RT-ddPCR compared to RT-qPCR, with PGS samples showing similar quantifiable concentrations of RNA using both assays. RT-qPCR shows higher frequency of detection of N1 and N2 gene regions in PCS (92.7, 90.6%, n = 6) as compared to PGS samples (79.2, 82.3%, n = 5). Sampling of PCS may therefore be an effective approach for SARS-CoV-2 viral quantification, especially during periods of declining and low COVID-19 incidence in the community. The pepper mild mottle virus (PMMoV) is determined to have a less variable RNA signal in PCS over a three month period for two WRRFs, regardless of environmental conditions, compared to Bacteroides 16S rRNA or human 18S rRNA, making PMMoV a potentially useful biomarker for normalization of SARS-CoV-2 signal. PMMoV-normalized PCS RNA signal from WRRFs of two cities correlated with the regional public health epidemiological metrics, identifying PCS normalized to a fecal indicator (PMMoV) as a potentially effective tool for monitoring trends during decreasing and low-incidence of infection of SARS-Cov-2 in communities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2020.116560DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7583624PMC
January 2021

Metabolic profile of fish muscle tissue changes with sampling method, storage strategy and time.

Anal Chim Acta 2020 Nov 1;1136:42-50. Epub 2020 Sep 1.

Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada. Electronic address:

Unstable tissue components (metabolites) are not easily captured and evaluated by traditional metabolomics methods. In this study, a comprehensive investigation of various sampling methods and storage conditions on the metabolomic profile of fish muscle was performed based on in vivo and ex vivo sampling. The GlobalStd algorithm and structure/reaction directed analysis under a linear mixed model were used to investigate the distinctive influences of these factors on the metabolomic profiles of fish tissue obtained via untargeted LC-MS analysis. Immediate analysis of samples yielded different metabolomic profiles compared to that of stored samples. Storage time was found to affect the metabolomic profile in a complex way, whereas storage temperature was shown to not substantially change this pattern. At the reaction level, metabolites involved in homologous series with butylation were shown stable during storage. Overall, our findings demonstrate that immediate instrumental analysis after in vivo solid phase microextraction (SPME) sampling and a reverse time series experimental design should be the preferred approaches for metabolomic profiling if unstable compounds are of interest.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2020.08.050DOI Listing
November 2020

Rainbow darter (Etheostoma caeruleum) from a river impacted by municipal wastewater effluents have altered gut content microbiomes.

Sci Total Environ 2021 Jan 18;751:141724. Epub 2020 Aug 18.

Department of Biology, McMaster University, Hamilton, Ontario, Canada.

Municipal wastewater treatment plant (WWTP) effluent contains pharmaceuticals and personal care products known to affect fish health and reproduction. The microbiome is a community of bacteria integral in maintaining host health and is influenced by species, diet, and environment. This study investigated changes in the diversity and composition of the gut content microbiome of rainbow darter (Etheostoma caeruleum) at ten sites on the Grand River, Ontario, Canada. Gut contents were collected in fall 2018 from these fish at sites upstream and downstream of two municipal wastewater treatment plants (WWTPs; Waterloo and Kitchener). 16S rRNA genes were sequenced to determine the composition and diversity (alpha and beta) of microbial taxa present. Gut content bacterial alpha diversity increased downstream of both WWTP outfalls; dominance of bacterial amplicon sequence variants decreased compared to upstream fish. Fish collected at different sites had distinct bacterial communities, with upstream samples dominant in Proteobacteria and Firmicutes, and downstream samples increasingly abundant in Proteobacteria and Cyanobacteria. In mammals, increased abundance of Proteobacteria is indicative of microbial dysbiosis and has been linked to altered health outcomes, but this is not yet known for fish. This research indicates that the fish gut content microbiome was altered downstream of WWTP effluent outfalls and could lead to negative health outcomes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.141724DOI Listing
January 2021

Photodecomposition of pharmaceuticals and personal care products using P25 modified with Ag nanoparticles in the presence of natural organic matter.

Sci Total Environ 2021 Jan 25;752:142000. Epub 2020 Aug 25.

Department of Biology, University of Waterloo, Waterloo N2L3G1, ON, Canada.

The presence of pharmaceuticals and personal care products (PPCPs) in water remains a concern due to their potential threat to environmental and human health. Advanced oxidation processes (AOPs) have been receiving attention in water treatment studies to remove PPCPs. However, most studies have been focused on pure water containing a limited number of substances. In this study, the photocatalytic efficiency of commercially available titanium dioxide nanoparticles (P25) and P25 modified by silver nanoparticles (Ag-P25) were compared for their ability to degrade 23 target PPCPs (2 μg L) in realistic water matrices containing natural organic matter (Suwanee River NOM, 6.12 mg L). The experiments were completed under ultraviolet-light emitting diode (UV-LED) illumination at 365 and 405 nm wavelengths, with the latter representing visible light exposure. Under 365 nm UV-LED treatment, 99% of the PPCPs were removed using both P25 and Ag-P25 photocatalysts within 180 min of the treatment duration. The number of PPCPs removed dropped to 57% and 53% for P25 and Ag-P25 respectively under the 405 nm UV-LED irradiation. Dissolved organic carbon (DOC) and UV absorbance at 254 nm (UV254) measured at the end of the experiment indicated that the aromatic fraction of NOM was preferentially removed from the water matrix. Also, Ag-P25 was more effective in DOC removal than P25. The relationships of removal rate constants with physico-chemical properties of the substances were also determined. The molecular weight and charge were strongly associated with removal, with the former and the latter being positively and negatively correlated with the rate constants. The results of this work indicate that Ag-P25 is a promising photocatalyst to degrade persistent substances such as PPCPs and NOM even if they are present in a complex water matrix. The properties of individual substances can also be employed as an indication of their removal using this technology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.142000DOI Listing
January 2021

Development of a thin-film solid-phase microextraction (TF-SPME) method coupled to liquid chromatography and tandem mass spectrometry for high-throughput determination of steroid hormones in white sucker fish plasma.

Anal Bioanal Chem 2020 Jul 2;412(17):4183-4194. Epub 2020 May 2.

Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.

Steroid hormones (SH) play a number of important physiological roles in vertebrates including fish. Changes in SH concentration significantly affect reproduction, differentiation, development, or metabolism. The objective of this study was to develop an in vitro high-throughput thin-film solid-phase microextraction (TF-SPME)-liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for targeted analysis of endogenous SH (cortisol, testosterone, progesterone, estrone (E1), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2)) in wild white sucker fish plasma where the concentrations of the analytes are substantially low. A simple TF-SPME method enabled the simultaneous determination of free and total SH concentrations. The use of biocompatible coating allowed direct extraction of these hormones from complex biological samples without prior preparation. The carryover was less than 3%, thereby ensuring reusability of the devices and reproducibility. The results showed that TF-SPME was suitable for the analysis of compounds in the polarity range between 1.28 and 4.31 such as SH at different physicochemical properties. The proposed method was validated according to bioanalytical method validation guidelines. The limit of detection (LOD) and limit of quantification(LOQ) for cortisol, testosterone, progesterone, E1, E2, and EE2 were from 0.006 to 0.150 ng/mL and from 0.020 to 0.500 ng/mL, respectively. The recovery for the method was about 85%, and the accuracy and precision of the method for cortisol, testosterone, and progesterone were ≤ 6.0% and ≤ 11.2%, respectively, whereas those for E1, E2, and EE2 were ≤ 15.0% and ≤ 10.2%, respectively. On the basis of this study, TF-SPME demonstrated several important advantages such as simplicity, sensitivity, and robustness under laboratory conditions. Graphical abstract.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-020-02657-xDOI Listing
July 2020

Multiple Stressors in the Environment: The Effects of Exposure to an Antidepressant (Venlafaxine) and Increased Temperature on Zebrafish Metabolism.

Front Physiol 2019 19;10:1431. Epub 2019 Nov 19.

Department of Biology, University of Waterloo, Waterloo, ON, Canada.

Aquatic organisms are continuously exposed to multiple environmental stressors working cumulatively to alter ecosystems. Wastewater-dominated environments are often riddled by a myriad of stressors, such as chemical and thermal stressors. The objective of this study was to examine the effects of an environmentally relevant concentration of a commonly prescribed antidepressant, venlafaxine (VFX) [1.0 μg/L], in addition to a 5°C increase in water temperature on zebrafish metabolism. Fish were chronically exposed (21 days) to one of four conditions: (i) 0 μg/L VFX at 27°C; (ii) 1.0 μg/L VFX at 27°C; (iii) 0 μg/L VFX at 32°C; (iv) 1.0 μg/L VFX at 32°C. Following exposure, whole-body metabolism was assessed by routine metabolic rate (RMR) measurements, whereas tissue-specific metabolism was assessed by measuring the activities of major metabolic enzymes in addition to glucose levels in muscle. RMR was significantly higher in the multi-stressed group relative to . The combination of both stressors resulted in elevated pyruvate kinase activity and glucose levels, while lipid metabolism was depressed, as measured by 3-hydroxyacyl CoA dehydrogenase activity. Citrate synthase activity increased with the onset of temperature, but only in the group treatment without VFX. Catalase activity was also elevated with the onset of the temperature stressor, however, that was not the case for the multi-stressed group, potentially indicating a deleterious effect of VFX on the anti-oxidant defense mechanism. The results of this study highlight the importance of multiple-stressor research, as it able to further bridge the gap between field and laboratory studies, as well as have the potential of yielding surprising results that may have not been predicted using a conventional single-stressor approach.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphys.2019.01431DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6877669PMC
November 2019

In vivo solid-phase microextraction sampling combined with metabolomics and toxicological studies for the non-lethal monitoring of the exposome in fish tissue.

Environ Pollut 2019 Jun 11;249:109-115. Epub 2019 Mar 11.

Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada. Electronic address:

Various environmental studies have employed the biomonitoring of fish in their aquatic ecosystems in order to identify potential metabolic responses to the exposome. In this study, we applied in vivo solid-phase microextraction (SPME) to perform non-lethal sampling on the muscle tissue of living fish to extract toxicants and various endogenous metabolites. Sixty white suckers (Catastomus commersonii) were sampled from sites upstream, adjacent, and downstream from the oil sands development region of the Athabasca River (Alberta, Canada) in order to track their biochemical responses to potential contaminants. In vivo SPME sampling facilitated the extraction of a wide range of endogenous metabolites, mainly related to lipid metabolism. The obtained results revealed significant changes in the levels of numerous metabolites, including eicosanoids, linoleic acids, and fat-soluble vitamins, in fish sampled in different areas of the river, thus demonstrating SPME's applicability for the direct monitoring of exposure to different environmental toxicants. In addition, several classes of toxins, including petroleum-related compounds, that can cause serious physiological impairment were tentatively identified in the extracts. In vivo SPME, combined with the analysis of contaminants and endogenous metabolites, provided important information about the exposome; as such, this approach represents a potentially powerful and non-lethal tool for identifying the mechanisms that produce altered metabolic pathways in response to the mixtures of different environmental pollutants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2019.03.024DOI Listing
June 2019

Regenerative NanoOctopus Based on Multivalent-Aptamer-Functionalized Magnetic Microparticles for Effective Cell Capture in Whole Blood.

Anal Chem 2019 03 27;91(6):4017-4022. Epub 2019 Feb 27.

Institute of Translational Medicine , Shenzhen Second People's Hospital , First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen , 518055 , China.

Isolation of specific rare cell subtypes from whole blood is critical in cellular analysis and important in basic and clinical research. Traditional immunomagnetic cell capture suffers from suboptimal sensitivity, specificity, and time- and cost-effectiveness. Mimicking the features of octopuses, a device termed a "NanoOctopus" was developed for cancer cell isolation in whole blood. The device consists of long multimerized aptamer DNA strands, or tentacle DNA, immobilized on magnetic microparticle surfaces. Their ultrahigh sensitivity and specificity are attributed to multivalent binding of the tentacle DNA to cell receptors without steric hindrance. The simple, quick, and noninvasive capture and release of the target cells allows for extensive downstream cellular and molecular analysis, and the time- and cost-effectiveness of fabrication and regeneration of the devices makes them attractive for industrial manufacture.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.8b05432DOI Listing
March 2019

Tissue storage affects lipidome profiling in comparison to in vivo microsampling approach.

Sci Rep 2018 05 3;8(1):6980. Epub 2018 May 3.

Department of Chemistry, University of Waterloo, Waterloo, ON, Canada.

Low-invasive in vivo solid-phase microextraction (SPME) was used to investigate the lipid profiles of muscle tissue of living fish. Briefly, mixed mode SPME fibers were inserted into the muscle for 20 min extraction, and then the fibers were desorbed in an optimal mixture of solvents. The obtained lipid profile was then compared and contrasted to that obtained with employment of ex vivo SPME and solid-liquid extraction (SLE) from fish muscle tissue belonging to the same group of fish, following a one-year storage period. Ex vivo SPME analysis of stored muscle samples revealed 10-fold decrease in the number of detected molecular features in comparison to in vivo study. Moreover, in vivo microsampling enabled the identification of different classes of bioactive lipids, including fatty acyls, not present in the lipid profile obtained through ex vivo SPME and SLE, suggesting the alterations occurring in the unbound lipid fraction of the system under study during the storage and also indicating the advantage of the in vivo extraction approach.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-018-25428-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5934459PMC
May 2018

Modeling the exposure of wild fish to endocrine active chemicals: Potential linkages of total estrogenicity to field-observed intersex.

Water Res 2018 08 3;139:187-197. Epub 2018 Apr 3.

Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.

Decades of studies on endocrine disruption have suggested the need to manage the release of key estrogens from municipal wastewater treatment plants (WWTP). However, the proposed thresholds are below the detection limits of most routine chemical analysis, thereby restricting the ability of watershed managers to assess the environmental exposure appropriately. In this study, we demonstrated the utility of a mechanistic model to address the data gaps on estrogen exposure. Concentrations of the prominent estrogenic contaminants in wastewaters (estrone, estradiol, and ethinylestradiol) were simulated in the Grand River in southern Ontario (Canada) for nine years, including a period when major WWTP upgrades occurred. The predicted concentrations expressed as total estrogenicity (E2 equivalent concentrations) were contrasted to a key estrogenic response (i.e., intersex) in rainbow darter (Etheostoma caeruleum), a wild sentinel fish species. A predicted total estrogenicity in the river of ≥10 ng/L E2 equivalents was associated with high intersex incidence and severity, whereas concentrations <0.1 ng/L E2 equivalents were associated with minimal intersex expression. Exposure to a predicted river concentration of 0.4 ng/L E2 equivalents, the environmental quality standard (EQS) proposed by the European Union for estradiol, was associated with 34% (95% CI:30-38) intersex incidence and a very low severity score of 0.6 (95% CI:0.5-0.7). This exposure is not predicted to cause adverse effects in rainbow darter. The analyses completed in this study were only based on the predicted presence of three major estrogens (E1, E2, EE2), so caution must be exercised when interpreting the results. Nevertheless, this study illustrates the use of models for exposure assessment, especially when measured data are not available.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2018.04.005DOI Listing
August 2018

Rainbow trout exposed to benzo[a]pyrene yields conserved microRNA binding sites in DNA methyltransferases across 500 million years of evolution.

Sci Rep 2017 12 4;7(1):16843. Epub 2017 Dec 4.

Department of Biology, University of Waterloo, Waterloo, ON, Canada.

The objective of this study was to examine the regulation of DNA methylation following acute (24 h) and prolonged (14 d) exposure to low (1 ng/L) and high (10 ng/L) benzo[a]pyrene. However, with the recent release of the rainbow trout genome, we were able to conduct a more detailed analysis regarding the regulation of the enzymes involved in DNA methylation; DNA methyltransferases (DNMTs). Bioinformatic approaches were used to identify candidate microRNA (miRNA) that potentially bind to the DNMT1 and DNMT3a 3'UTR. Results indicated a significant decrease in global methylation in both liver and muscle, with an associated decrease in DNA methyltransferase activity and DNMT3a transcript abundance. There was a significant increase in one specific candidate miRNA (miR29a) that was predicted to bind to DNMT3a. Taking a comparative genomics approach, the binding sites of miR29a to the DNMT3a 3'UTR was compared across species, spanning fish to mammals, and revealed a highly conserved binding motif that has been maintained since the vertebrate ancestor, approximately 500 million years ago. This research establishes that miRNA act as an essential mediator between the environment and DNA methylation patterns via DNMTs, which is further confirmed by a genomic regulatory mechanism that has been deeply conserved throughout evolution.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-017-17236-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5715007PMC
December 2017

Impacts of wastewater treatment plant effluent on energetics and stress response of rainbow darter (Etheostoma caeruleum) in the Grand River watershed.

Comp Biochem Physiol B Biochem Mol Biol 2018 Oct 22;224:270-279. Epub 2017 Nov 22.

Department of Biology, University of Waterloo, N2L 3G1, Waterloo, ON, Canada.

The objective of this study was to assess the effects of municipal wastewater treatment plant effluent on the energetics and stress response of rainbow darter (Etheostoma caeruleum). Male and female rainbow darter were collected upstream and downstream of the Waterloo WWTP in the Grand River watershed, ON, Canada. To assess the effects of wastewater treatment plant effluent on whole-body and tissue specific metabolic capacity, closed-chamber respirometry and muscle-enzyme activity analyses were performed. Plasma cortisol was also collected from fish before and after an acute air-exposure stressor to evaluate the cortisol stress response in fish exposed to additional stressors. Male and female rainbow darter collected downstream of the effluent had higher oxygen consumption rates, while differences in enzyme activities were primarily associated with sex rather than collection site. No impairment in the cortisol stress response between downstream and upstream fish was observed, however baseline cortisol levels in female fish from the downstream site were significantly higher compared to other baseline groups. Stress-induced cortisol levels were also higher in female fish from both sites when compared to their male counterparts. Overall, this study demonstrates that chronic exposure to WWTP effluent impacts whole-body metabolic performance. This study was also able to demonstrate that sex-differences are a key determinant of various metabolic changes in response to physiological stress, thereby, providing a novel avenue to be considered and further explored.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpb.2017.11.011DOI Listing
October 2018

Use of prospective and retrospective risk assessment methods that simplify chemical mixtures associated with treated domestic wastewater discharges.

Environ Toxicol Chem 2018 03 22;37(3):690-702. Epub 2018 Jan 22.

School of the Environment, Nanjing University, Nanjing, People's Republic of China.

A framework is presented that is intended to facilitate the evaluation of potential aquatic ecological risks resulting from discharges of down-the-drain chemicals. A scenario is presented using representatives of many of the types of chemicals that are treated domestically. Predicted environmental chemical concentrations are based on reported loading rates and routine removal rates for 3 types of treatment: trickling filter, activated sludge secondary treatment, and activated sludge plus advanced oxidation process as well as instream effluent dilution. In tier I, predicted effluent concentrations were compared with the lowest predicted-no-effect concentration (PNEC) obtained from the literature using safety factors as needed. A cumulative risk characterization ratio (cumRCR) < 1.0 indicates that risk is unlikely and no further action is needed. Otherwise, a tier 2 assessment is used, in which PNECs are based on trophic level. If tier 2 indicates a possible risk, then a retrospective assessment is recommended. In tier 1, the cumRCR was > 1.0 for all 3 treatment types in our scenario, even though no chemical exceeded a hazard quotient of 1.0 in activated sludge or advanced oxidation process. In tier 2, activated sludge yielded a lower cumRCR than trickling filter because of higher removal rates, and the cumRCR in the advanced oxidation process was << 1.0. Based on the maximum cumulative risk ratio (MCR), more than one-third of the predicted risk was accounted for by one chemical, and at least 90% was accounted for by 3 chemicals, indicating that few chemicals influenced the mixture risk in our scenario. We show how a retrospective assessment can test whether certain chemicals hypothesized as potential drivers in the prospective assessment could have, or are having, deleterious effects on aquatic life. Environ Toxicol Chem 2018;37:690-702. © 2017 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.4013DOI Listing
March 2018

Assessing recovery of in vitro steroid production in male rainbow darter (Etheostoma caeruleum) in response to municipal wastewater treatment plant infrastructure changes.

Environ Toxicol Chem 2018 Feb 18;37(2):501-514. Epub 2017 Dec 18.

Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.

The present study examined in vitro 11-ketotestosterone and testosterone production by the testes of rainbow darter (Etheostoma caeruleum) collected from selected reference sites and downstream of 2 municipal wastewater treatment plants (MWWTPs; Waterloo and Kitchener) on the central Grand River (Ontario, Canada), over a 6-yr period (2011-2016). The main objective was to investigate if infrastructure upgrades at the Kitchener MWWTP in 2012 resulted in a recovery of this response in the post-upgrade period (2013-2016). Two supporting studies showed that the fall season is appropriate for measuring in vitro sex steroid production because it provides stable detection of steroid patterns, and that the sample handling practiced in the present study did not introduce a bias. Infrastructure upgrades of the Kitchener MWWTP resulted in significant reductions in ammonia and estrogenicity. After the upgrades, 11-ketotestosterone production by MWWTP-exposed fish increased in 2013 and it continued to recover throughout the study period of 2014 through 2016, returning to levels measured in reference fish. Testosterone production was less sensitive and it lacked consistency. The Waterloo MWWTP underwent some minor upgrades but the level of ammonia and estrogenicity remained variable over time. The production of 11-ketotestosterone and testosterone in rainbow darter below the Waterloo MWWTP was variable and without a clear recovery pattern over the course of the present study. The results of the present study demonstrated that measuring production of sex steroids (especially 11-ketotestosterone) over multiple years can be relevant for assessing responses in fish to environmental changes such as those resulting from major infrastructure upgrades. Environ Toxicol Chem 2018;37:501-514. © 2017 SETAC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.3986DOI Listing
February 2018

Multi-year prediction of estrogenicity in municipal wastewater effluents.

Sci Total Environ 2018 Jan 30;610-611:1103-1112. Epub 2017 Aug 30.

Department of Biology, University of Waterloo, Waterloo N2L 3G1, ON, Canada.

In this study, the estrogenicity of two major wastewater treatment plant (WWTP) effluents located in the central reaches of the Grand River watershed in southern Ontario was estimated using population demographics, excretion rates, and treatment plant-specific removals. Due to the lack of data on estrogen concentrations from direct measurements at WWTPs, the treatment efficiencies through the plants were estimated using the information obtained from an effects-directed analysis. The results show that this approach could effectively estimate the estrogenicity of WWTP effluents, both before and after major infrastructure upgrades were made at the Kitchener WWTP. The model was then applied to several possible future scenarios including population growth and river low flow conditions. The scenario analyses showed that post-upgrade operation of the Kitchener WWTP will not release highly estrogenic effluent under the 2041 projected population increase (36%) or summer low flows. Similarly, the Waterloo WWTP treatment operation is also expected to improve once the upgrades have been fully implemented and is expected to effectively treat estrogens even under extreme scenarios of population growth and river flows. The developed model may be employed to support decision making on wastewater management strategies designed for environmental protection, especially on reducing the endocrine effects in fish exposed to WWTP effluents.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2017.08.171DOI Listing
January 2018

How Does Reference Site Selection Influence Interpretation of Omics Data?: Evaluating Liver Transcriptome Responses in Male Rainbow Darter (Etheostoma caeruleum) across an Urban Environment.

Environ Sci Technol 2017 Jun 17;51(11):6470-6479. Epub 2017 May 17.

Center for Environmental and Human Toxicology & Department of Physiological Sciences, University of Florida , 2187 Mowry Road, Building 471, PO Box 110885, Gainesville, Florida 32611, United States.

Studies quantifying the influence of reference site selection on transcriptomic profiles in aquatic organisms exposed to complex mixtures are lacking in the literature, despite the significant implications of such research for the interpretation of omics data sets. We measured hepatic transcriptomic responses in fish across an urban environment in the central Grand River watershed (Ontario, Canada). Adult male rainbow darter (RBD) (Etheostoma caeruleum) were collected from nine sites at varying distances from two major municipal wastewater treatment plants (MWWTPs) (Waterloo, Kitchener), including three upstream reference sites. The transcriptomic response in RBD was independently compared with that of fish from each of the three reference sites. Data collected in fish downstream of the Waterloo MWWTP (poorest effluent quality) suggested that ∼15.5% of the transcriptome response was influenced by reference site selection. In contrast, at sites where the impact of MWWTPs was less-pronounced and fish showed less of a transcriptome response, reference site selection had a greater influence (i.e., ∼56.9% of transcripts were different depending on the site used). This study highlights the importance of conducting transcriptomics studies that leverage more than one reference site, and it broadens our understanding of the molecular responses in fish in dynamic natural environments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.7b00894DOI Listing
June 2017

Municipal wastewater treatment plant effluent-induced effects on freshwater mussel populations and the role of mussel refugia in recolonizing an extirpated reach.

Environ Pollut 2017 Jun 18;225:460-468. Epub 2017 Mar 18.

Department of Biology, University of Waterloo, Waterloo, ON, Canada.

Global human population and urbanization continually increase the volume of wastewater entering aquatic environments. Despite efforts to treat these effluents, they contribute a diverse suite of substances that enter watersheds at concentrations that have the potential to elicit adverse effects on aquatic organisms. The relationship between wastewater treatment plant (WWTP) effluent exposure and biological responses within aquatic ecosystems remains poorly understood, especially at the population level. To examine the effect of WWTP effluents on sentinel invertebrates, freshwater mussels were assessed in the Grand River, Ontario, in populations associated with the outfall of a major WWTP. This watershed, within the Laurentian Great Lakes basin, has a diverse community of twenty-five species of mussels, including nine Species at Risk, and is representative of many habitats that receive WWTP effluents regionally as well as globally. Surveys were conducted to assess the presence and species richness of freshwater mussels. In total, 55 sites downstream of the WWTP were examined using timed visual searches with one or 2 h of effort spent searching 100 m segments. Although seven species of mussels were found in moderate abundance (mean of 8 mussels per hour of searching across 2 sites) upstream of the WWTP outfall, no live mussels were observed for 7.0 km downstream of the WWTP. Long-term water quality monitoring data indicate that ammonia and nitrite concentrations along with large seasonal declines in diel dissolved oxygen were associated with the extirpation of mussels downstream of the WWTP. The first live mussels found downstream were below the confluence with a major tributary indicating that in addition to an improvement in water quality to a state that enables mussels (and/or their fish hosts) to survive, a nearby mussel refuge may have facilitated the recolonization of the depauperate WWTP-impacted zone.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2017.03.010DOI Listing
June 2017

In vivo microsampling to capture the elusive exposome.

Sci Rep 2017 03 7;7:44038. Epub 2017 Mar 7.

Department of Chemistry, University of Waterloo, ON, Canada.

Loss and/or degradation of small molecules during sampling, sample transportation and storage can adversely impact biological interpretation of metabolomics data. In this study, we performed in vivo sampling using solid-phase microextraction (SPME) in combination with non-targeted liquid chromatography and high-resolution tandem mass spectrometry (LC-MS/MS) to capture the fish tissue exposome using molecular networking analysis, and the results were contrasted with molecular differences obtained with ex vivo SPME sampling. Based on 494 MS/MS spectra comparisons, we demonstrated that in vivo SPME sampling provided better extraction and stabilization of highly reactive molecules, such as 1-oleoyl-sn-glycero-3-phosphocholine and 1-palmitoleoyl-glycero-3-phosphocholine, from fish tissue samples. This sampling approach, that minimizes sample handling and preparation, offers the opportunity to perform longitudinal monitoring of the exposome in biological systems and improve the reliability of exposure-measurement in exposome-wide association studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/srep44038DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5339820PMC
March 2017

Returning to normal? Assessing transcriptome recovery over time in male rainbow darter (Etheostoma caeruleum) liver in response to wastewater-treatment plant upgrades.

Environ Toxicol Chem 2017 08 23;36(8):2108-2122. Epub 2017 Feb 23.

Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.

The present study measured hepatic transcriptome responses in male rainbow darter (Etheostoma caeruleum) exposed to 2 municipal wastewater-treatment plants (MWWTPs; Kitchener and Waterloo) over 4 fall seasons (2011-2014) in the Grand River (Ontario, Canada). The overall goal was to determine if upgrades at the Kitchener MWWTP (in 2012) resulted in transcriptome responses indicative of improved effluent quality. The number of differentially expressed probes in fish downstream of the Kitchener outfall (904-1223) remained comparable to that downstream of Waterloo (767-3867). Noteworthy was that year and the interaction of year and site explained variability in more than twice the number of transcripts than site alone, suggesting that year and the interaction of year and site had a greater effect on the transcriptome than site alone. Gene set enrichment analysis revealed a gradual reduction in the number of gene ontologies over time at exposure sites, which corresponded with lower contaminant load. Subnetwork enrichment analysis revealed that there were noticeable shifts in the cell pathways differently expressed in the liver preupgrade and postupgrade. The dominant pathways altered preupgrade were related to genetic modifications and cell division, whereas postupgrade they were associated with the immune system, reproduction, and biochemical responses. Molecular pathways were dynamic over time, and following the upgrades, there was little evidence that gene expression profiles in fish collected from high-impact sites postupgrade were more similar to those in fish collected from reference site. Environ Toxicol Chem 2017;36:2108-2122. © 2017 SETAC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.3741DOI Listing
August 2017

Reduction of Intersex in a Wild Fish Population in Response to Major Municipal Wastewater Treatment Plant Upgrades.

Environ Sci Technol 2017 02 12;51(3):1811-1819. Epub 2017 Jan 12.

Department of Biology, University of Waterloo , 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.

Intersex in fish downstream of municipal wastewater treatment plants (MWWTPs) is a global concern. Consistent high rates of intersex in male rainbow darter (Etheostoma caeruleum) have been reported for several years in the Grand River, in southern Ontario, Canada, in close proximity to two MWWTPs. The larger MWWTP (Kitchener) recently underwent upgrades that included the conversion from a carbonaceous activated sludge to nitrifying activated sludge treatment process. This created a unique opportunity to assess whether upgrades designed to improve effluent quality could also remediate the intersex previously observed in wild fish. Multiple years (2007-2012) of intersex data on male rainbow darter collected before the upgrades at sites associated with the MWWTP outfall were compared with intersex data collected in postupgrade years (2013-2015). These upgrades resulted in a reduction from 70 to 100% intersex incidence (preupgrade) to <10% in postupgrade years. Although the cause of intersex remains unknown, indicators of effluent quality including nutrients, pharmaceuticals, and estrogenicity improved in the effluent after the upgrades. This study demonstrated that investment in MWWTP upgrades improved effluent quality and was associated with an immediate change in biological responses in the receiving environment. This is an important finding considering the tremendous cost of wastewater infrastructure.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.6b05370DOI Listing
February 2017

Characterizing Transcriptional Networks in Male Rainbow Darter (Etheostoma caeruleum) that Regulate Testis Development over a Complete Reproductive Cycle.

PLoS One 2016 18;11(11):e0164722. Epub 2016 Nov 18.

Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada.

Intersex is a condition that has been associated with exposure to sewage effluents in male rainbow darter (Etheostoma caeruleum). To better understand changes in the transcriptome that are associated with intersex, we characterized annual changes in the testis transcriptome in wild, unexposed fish. Rainbow darter males were collected from the Grand River (Ontario, Canada) in May (spawning), August (post-spawning), October (recrudescence), January (developing) and March (pre-spawning). Histology was used to determine the proportion of spermatogenic cell types that were present during each period of testicular maturation. Regression analysis determined that the proportion of spermatozoa versus spermatocytes in all stages of development (R2 ≥ 0.58) were inversely related; however this was not the case when males were in the post-spawning period. Gene networks that were specific to the transition from developing to pre-spawning stages included nitric oxide biosynthesis, response to wounding, sperm cell function, and stem cell maintenance. The pre-spawning to spawning transition included gene networks related to amino acid import, glycogenesis, Sertoli cell proliferation, sperm capacitation, and sperm motility. The spawning to post-spawning transition included unique gene networks associated with chromosome condensation, ribosome biogenesis and assembly, and mitotic spindle assembly. Lastly, the transition from post-spawning to recrudescence included gene networks associated with egg activation, epithelial to mesenchymal transition, membrane fluidity, and sperm cell adhesion. Noteworthy was that there were a significant number of gene networks related to immune system function that were differentially expressed throughout reproduction, suggesting that immune network signalling has a prominent role in the male testis. Transcripts in the testis of post-spawning individuals showed patterns of expression that were most different for the majority of transcripts investigated when compared to the other stages. Interestingly, many transcripts associated with female sex differentiation (i.e. esr1, sox9, cdca8 and survivin) were significantly higher in the testis during the post-spawning season compared to other testis stages. At post-spawning, there were higher levels of estrogen and androgen receptors (esr1, esr2, ar) in the testis, while there was a decrease in the levels of sperm associated antigen 1 (spag1) and spermatogenesis associated 4 (spata4) mRNA. Cyp17a was more abundant in the testis of fish in the pre-spawning, spawning, and post-spawning seasons compared to those individuals that were recrudescent while aromatase (cyp19a) did not vary in expression over the year. This study identifies cell process related to testis development in a seasonally spawning species and improves our understanding regarding the molecular signaling events that underlie testicular growth. This is significant because, while there are a number of studies characterizing molecular pathways in the ovary, there are comparatively less describing transcriptomic patterns in the testis in wild fish.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164722PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5115663PMC
June 2017

An Assessment of the Spatial and Temporal Variability of Biological Responses to Municipal Wastewater Effluent in Rainbow Darter (Etheostoma caeruleum) Collected along an Urban Gradient.

PLoS One 2016 24;11(10):e0164879. Epub 2016 Oct 24.

Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.

Municipal wastewater effluent (MWWE) and its constituents, such as chemicals of emerging concern, pose a potential threat to the sustainability of fish populations by disrupting key endocrine functions in aquatic organisms. While studies have demonstrated changes in biological markers of exposure of aquatic organisms to groups of chemicals of emerging concern, the variability of these markers over time has not been sufficiently described in wild fish species. The aim of this study was to assess the spatial and temporal variability of biological markers in response to MWWE exposure and to test the consistency of these responses between seasons and among years. Rainbow darter (Etheostoma caeruleum) were collected in spring and fall seasons over a 5-year period in the Grand River, Ontario, Canada. In addition to surface water chemistry (nutrients and selected pharmaceuticals), measures were taken across levels of biological organization in rainbow darter. The measurements of hormone production, gonad development, and intersex severity were temporally consistent and suggested impaired reproduction in male fish collected downstream of MWWE outfalls. In contrast, ovarian development and hormone production in females appeared to be influenced more by urbanization than MWWE. Measures of gene expression and somatic indices were highly variable between sites and years, respectively, and were inconclusive in terms of the impacts of MWWE overall. Robust biomonitoring programs must consider these factors in both the design and interpretation of results, especially when spatial and temporal sampling of biological endpoints is limited. Assessing the effects of contaminants and other stressors on fish in watersheds would be greatly enhanced by an approach that considers natural variability in the endpoints being measured.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164879PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5077097PMC
June 2017

In vivo tissue sampling using solid-phase microextraction for non-lethal exposome-wide association study of CYP1A1 induction in Catostomus commersonii.

Environ Res 2016 Nov 4;151:216-223. Epub 2016 Aug 4.

Department of Chemistry, University of Waterloo, ON, Canada. Electronic address:

Fish are widely used for monitoring aquatic ecosystem health and water contamination by organic toxicants from natural and anthropogenic sources. However, most of these studies only focused on the measurement of specific toxicants and did not examine the impact of chemical mixtures. In this study, we examined whether the tissue exposome captured in vivo with solid-phase microextraction (SPME) without lethal sampling and analyzed by liquid chromatography-high resolution mass spectrometry can detect differences between Catostomus commersonii exhibiting a significant induction of CYP1A1, through case/control comparisons, controlling for false discovery rates. We observed the presence of environmental toxicants in induced case fish known as potential inducers of CYP1A1. We also found significant changes in the levels of anti-oxidants, short-lived oxysterols and other lipids associated with CYP1A1 induction, possibly due to oxidative stress, lipid peroxidation and free fatty acids mobilization to maintain homeostatic state. In vivo SPME opens the way to perform repeated sampling on the same animal over the time and explore the individual internal exposome trajectory for better characterization of the links between toxicant load and health effects, at the individual scale.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2016.07.006DOI Listing
November 2016

Freshwater mussels in an urban watershed: Impacts of anthropogenic inputs and habitat alterations on populations.

Sci Total Environ 2017 Jan 14;574:671-679. Epub 2016 Oct 14.

Department of Biology, University of Waterloo, Waterloo, ON, Canada. Electronic address:

The substantial increase in urbanization worldwide has resulted in higher emissions of wastewater to riverine systems near urban centers, which often impairs aquatic populations and communities. This study examined the effect of urbanization on freshwater mussel populations, including Species at Risk in two rivers receiving wastewater. The influence of anthropogenic activities was assessed in a watershed in the Laurentian Great Lakes basin, one that historically supported one of the most diverse mussel faunas in Canada. In the Grand River (ON), four sites along a 60km reach spanning from an upstream reference site to an urban-impacted downstream area were examined. In the Speed River, mussel populations at six sites along a 10km reach, selected to bracket specific anthropogenic inputs and structures were assessed. A semi-quantitative visual search method revealed that catch per unit effort in the Grand River declined by >60% from the upstream reference site to the area downstream of an urban center. The size (length) frequency distribution of the most abundant species, Lasmigona costata, was significantly (p≤0.008) different upstream of the majority of urban inputs (45-130mm) compared to downstream of the cities (85-115mm). In the Speed River, impoundments and wastewater treatment plants (WWTP) reduced both the diversity and catch per effort. Most striking were 84 and 95% changes in the number of mussels found on either side of two impoundments, and a 98% drop in mussels immediately downstream of a WWTP outfall. These population level effects of decreased abundance and underrepresentation of smaller mussels downstream of the urban area correspond to previously documented impacts at the biochemical and whole organism level of biological organization in wild mussels at this location. Our results demonstrate that poor water quality and physical barriers in urban environments continue to impair susceptible populations and communities of aquatic animals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2016.09.110DOI Listing
January 2017
-->