Publications by authors named "Mark L Schlossman"

29 Publications

  • Page 1 of 1

Free Thiols Regulate the Interactions and Self-Assembly of Thiol-Passivated Metal Nanoparticles.

Nano Lett 2021 Feb 3;21(4):1613-1619. Epub 2021 Feb 3.

NSF's ChemMatCARS, University of Chicago, Chicago, Illinois 60637, United States.

Thiol ligands bound to the metallic core of nanoparticles determine their interactions with the environment and self-assembly. Recent studies suggest that equilibrium between bound and free thiols alters the ligand coverage of the core. Here, X-ray scattering and MD simulations investigate water-supported monolayers of gold-core nanoparticles as a function of the core-ligand coverage that is varied in experiments by adjusting the concentration of total thiols (sum of free and bound thiols). Simulations demonstrate that the presence of free thiols produces a nearly symmetrical coating of ligands on the core. X-ray measurements show that above a critical value of core-ligand coverage the nanoparticle core rises above the water surface, the edge-to-edge distance between neighboring nanoparticles increases, and the nanoparticle coverage of the surface decreases. These results demonstrate the important role of free thiols: they regulate the organization of bound thiols on the core and the interactions of nanoparticles with their surroundings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.0c04147DOI Listing
February 2021

Evolution and Reversible Polarity of Multilayering at the Ionic Liquid/Water Interface.

J Phys Chem B 2020 07 14;124(29):6412-6419. Epub 2020 Jul 14.

Department of Energy and Hydrocarbon Chemistry, Kyoto University, Kyoto 615-8510, Japan.

Highly correlated positioning of ions underlies Coulomb interactions between ions and electrified interfaces within dense ionic fluids such as biological cells and ionic liquids. Recent work has shown that highly correlated ionic systems behave differently than dilute electrolyte solutions, and interest is focused upon characterizing the electrical and structural properties of the dense electrical double layers (EDLs) formed at internal interfaces. It has been a challenge for experiments to characterize the progressive development of the EDL on the nanoscale as the interfacial electric potential is varied over a range of positive and negative values. Here we address this challenge by measuring X-ray reflectivity from the interface between an ionic liquid (IL) and a dilute aqueous electrolyte solution over a range of interfacial potentials from -450 to 350 mV. The growth of alternately charged cation-rich and anion-rich layers was observed along with a polarity reversal of the layers as the potential changed sign. These data show that the structural development of an ionic multilayer-like EDL with increasing potential is similar to that suggested by phenomenological theories and MD simulations, although our data also reveal that the excess charge beyond the first ionic layer decays more rapidly than predicted.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.0c03711DOI Listing
July 2020

Molecular interactions of phospholipid monolayers with a model phospholipase.

Soft Matter 2019 May;15(20):4068-4077

Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.

The intrinsic overexpression of secretory phospholipase A2 (sPLA2) in various pro-inflammatory diseases and cancers has the potential to be exploited as a therapeutic strategy for diagnostics and treatment. To explore this potential and advance our knowledge of the role of sPLA2 in related diseases, it is necessary to systematically investigate the molecular interaction of the enzyme with lipids. By employing a Langmuir trough integrated with X-ray reflectivity and grazing incidence X-ray diffraction techniques, this study examined the molecular packing structure of 1,2-palmitoyl-sn-glycero-3-phosphocholine (DPPC) films before and after enzyme adsorption and enzyme-catalyzed degradation. Molecular interaction of sPLA2 (from bee venom) with the DPPC monolayer exhibited Ca2+ dependence. DPPC molecules at the interface without Ca2+ retained a monolayer organization; upon adsorption of sPLA2 to the monolayer the packing became tighter. In contrast, sPLA2-catalyzed degradation of DPPC occurred in the presence of Ca2+, leading to disruption of the ordered monolayer structure of DPPC. The interfacial film became a mixture of highly ordered multilayer domains of palmitic acid (PA) and loosely packed monolayer phase of 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (lysoPC) that potentially contained the remaining un-degraded DPPC. The redistribution of lipid degradation products into the third dimension, which produced multilayer PA domains, damaged the structural integrity of the original lipid layer and may explain the bursting of liposomes observed in other studies after a latency period of mixing liposomes with sPLA2. A quantitative understanding of the lipid packing and lipid-enzyme interaction provides an intuitive means of designing and optimizing lipid-related drug delivery systems.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8sm01154kDOI Listing
May 2019

Nanoscale view of assisted ion transport across the liquid-liquid interface.

Proc Natl Acad Sci U S A 2019 09 12;116(37):18227-18232. Epub 2018 Mar 12.

Department of Physics, University of Illinois at Chicago, Chicago, IL 60607;

During solvent extraction, amphiphilic extractants assist the transport of metal ions across the liquid-liquid interface between an aqueous ionic solution and an organic solvent. Investigations of the role of the interface in ion transport challenge our ability to probe fast molecular processes at liquid-liquid interfaces on nanometer-length scales. Recent development of a thermal switch for solvent extraction has addressed this challenge, which has led to the characterization by X-ray surface scattering of interfacial intermediate states in the extraction process. Here, we review and extend these earlier results. We find that trivalent rare earth ions, Y(III) and Er(III), combine with bis(hexadecyl) phosphoric acid (DHDP) extractants to form inverted bilayer structures at the interface; these appear to be condensed phases of small ion-extractant complexes. The stability of this unconventional interfacial structure is verified by molecular dynamics simulations. The ion-extractant complexes at the interface are an intermediate state in the extraction process, characterizing the moment at which ions have been transported across the aqueous-organic interface, but have not yet been dispersed in the organic phase. In contrast, divalent Sr(II) forms an ion-extractant complex with DHDP that leaves it exposed to the water phase; this result implies that a second process that transports Sr(II) across the interface has yet to be observed. Calculations demonstrate that the budding of reverse micelles formed from interfacial Sr(II) ion-extractant complexes could transport Sr(II) across the interface. Our results suggest a connection between the observed interfacial structures and the extraction mechanism, which ultimately affects the extraction selectivity and kinetics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1701389115DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6744852PMC
September 2019

Coupling X-Ray Reflectivity and In Silico Binding to Yield Dynamics of Membrane Recognition by Tim1.

Biophys J 2017 Oct;113(7):1505-1519

Program in Biophysical Sciences, Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois; Department of Chemistry, The University of Chicago, Chicago, Illinois; James Franck Institute, The University of Chicago, Chicago, Illinois. Electronic address:

The dynamic nature of lipid membranes presents significant challenges with respect to understanding the molecular basis of protein/membrane interactions. Consequently, there is relatively little known about the structural mechanisms by which membrane-binding proteins might distinguish subtle variations in lipid membrane composition and/or structure. We have previously developed a multidisciplinary approach that combines molecular dynamics simulation with interfacial x-ray scattering experiments to produce an atomistic model for phosphatidylserine recognition by the immune receptor Tim4. However, this approach requires a previously determined protein crystal structure in a membrane-bound conformation. Tim1, a Tim4 homolog with distinct differences in both immunological function and sensitivity to membrane composition, was crystalized in a closed-loop conformation that is unlikely to support membrane binding. Here we have used a previously described highly mobile membrane mimetic membrane in combination with a conventional lipid bilayer model to generate a membrane-bound configuration of Tim1 in silico. This refined structure provided a significantly improved fit of experimental x-ray reflectivity data. Moreover, the coupling of the x-ray reflectivity analysis with both highly mobile membrane mimetic membranes and conventional lipid bilayer molecular dynamics simulations yielded a dynamic model of phosphatidylserine membrane recognition by Tim1 with atomic-level detail. In addition to providing, to our knowledge, new insights into the molecular mechanisms that distinguish the various Tim receptors, these results demonstrate that in silico membrane-binding simulations can remove the requirement that the existing crystal structure be in the membrane-bound conformation for effective x-ray reflectivity analysis. Consequently, this refined methodology has the potential for much broader applicability with respect to defining the atomistic details of membrane-binding proteins.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpj.2017.08.003DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627149PMC
October 2017

Molecular Structure of Canonical Liquid Crystal Interfaces.

J Am Chem Soc 2017 03 1;139(10):3841-3850. Epub 2017 Mar 1.

Argonne National Laboratory , Argonne, Illinois 60439, United States.

Numerous applications of liquid crystals rely on control of molecular orientation at an interface. However, little is known about the precise molecular structure of such interfaces. In this work, synchrotron X-ray reflectivity measurements, accompanied by large-scale atomistic molecular dynamics simulations, are used for the first time to reconstruct the air-liquid crystal interface of a nematic material, namely, 4-pentyl-4'-cyanobiphenyl (5CB). The results are compared to those for 4-octyl-4'-cyanobiphenyl (8CB) which, in addition to adopting isotropic and nematic states, can also form a smectic phase. Our findings indicate that the air interface imprints a highly ordered structure into the material; such a local structure then propagates well into the bulk of the liquid crystal, particularly for nematic and smectic phases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.7b00167DOI Listing
March 2017

Erbium(III) Coordination at the Surface of an Aqueous Electrolyte.

J Phys Chem B 2015 Jul 28;119(28):8734-45. Epub 2015 May 28.

§Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States.

Grazing-incidence (GI) X-ray absorption spectroscopy (XAS) under conditions of total external reflection is used to explore the coordination environment of the trivalent erbium ion, Er(3+), at an electrolyte-vapor interface. A parallel study of the bulk aqueous electrolyte (1 M ErCl3 in HCl at pH = 1.54) shows that the Er(3+) ions have a simple hydration shell with an average Er-OH2 bond distance of 2.33(1) Å, consistent with previous descriptions of the aquated cation, [Er(OH2)8](3+). No other correlations are observed in the electrolyte EXAFS (extended X-ray absorption fine structure) data acquired at room temperature. In contrast, the coordination of the Er(3+) ions at the electrolyte-helium interface, as interrogated by use of electron-yield detection, reveal correlations beyond the Er-OH2 hydration shell that are unexpectedly well-defined. Analyses show an environment that consists of a first coordination sphere of 6-7 O atoms at 2.36(1) Å and a second one of 3 Cl atoms at 2.89(2) Å, suggesting the formation of a neutral [(H2O)6-7ErCl3] entity at the surface of the electrolyte. The presence of a third, distant peak in the Fourier transform data is attributed to Er-Er correlations (in possible combination with contributions from distant Er-O and Er-Cl interactions). The best-Z and -integer fits reveal 3 Er atoms at 3.20(2) Å, confirming the near-surface-enrichment of Er(3+) as revealed previously by use of X-ray reflectivity measurements (J. Phys. Chem. C 2013, 117, 19082). Here, the strong associations between the Er-aqua-chloro entities at the electrolyte-vapor interface are shown to be consistent with the formation of domains of polynuclear cluster motifs, such as would arise through hydrolysis reactions of the aquated Er(3+) cations. The local structural results and the calculated surface coverage are of relevance to understand the myriad reactions involved in the hydrometallurgical process of solvent extraction (SX) for metal purification, which involves the transfer of a selected metal ion, like Er, across an interface from an aqueous electrolyte to an organic phase.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.5b02958DOI Listing
July 2015

Interfacial localization and voltage-tunable arrays of charged nanoparticles.

Nano Lett 2014 Dec 24;14(12):6816-22. Epub 2014 Nov 24.

Department of Physics, University of Illinois at Chicago , Chicago, Illinois 60607, United States.

Experiments and computer simulations provide a new perspective that strong correlations of counterions with charged nanoparticles can influence the localization of nanoparticles at liquid-liquid interfaces and support the formation of voltage-tunable nanoparticle arrays. We show that ion condensation onto charged nanoparticles facilitates their transport from the aqueous-side of an interface between two immiscible electrolyte solutions to the organic-side, but contiguous to the interface. Counterion condensation onto the highly charged nanoparticles overcomes the electrostatic barrier presented by the low permittivity organic material, thus providing a mechanism to transport charged nanoparticles into organic phases with implications for the distribution of nanoparticles throughout the environment and within living organisms. After transport, the nanoparticles assemble into a two-dimensional (2D) nearly close-packed array on the organic side of the interface. Voltage-tunable counterion-mediated interactions between the nanoparticles are used to control the lattice spacing of the 2D array. Tunable nanoparticle arrays self-assembled at liquid interfaces are applicable to the development of electro-variable optical devices and active elements that control the physical and chemical properties of liquid interfaces on the nanoscale.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl502450jDOI Listing
December 2014

Electric Field Effect on Phospholipid Monolayers at an Aqueous-Organic Liquid-Liquid Interface.

J Phys Chem B 2015 Jul 21;119(29):9319-34. Epub 2014 Oct 21.

†Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States.

The electric potential difference across cell membranes, known as the membrane potential, plays an important role in the activation of many biological processes. To investigate the effect of the membrane potential on the molecular ordering of lipids within a biomimetic membrane, a self-assembled monolayer of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) lipids at an electrified 1,2-dichloroethane/water interface is studied with X-ray reflectivity and interfacial tension. Measurements over a range of electric potential differences, -150 to +130 mV, that encompass the range of typical biomembrane potentials demonstrate a nearly constant and stable structure whose lipid interfacial density is comparable to that found in other biomimetic membrane systems. Measurements at higher positive potentials, up to 330 mV, illustrate a monotonic decrease in the lipid interfacial density and accompanying variations in the interfacial configuration of the lipid. Molecular dynamics simulations, designed to mimic the experimental conditions, show that the measured changes in lipid configuration are due primarily to the variation in area per lipid with increasing applied electric field. Rotation of the SOPC dipole moment by the torque from the applied electric field appears to be negligible, except at the highest measured potentials. The simulations confirm in atomistic detail the measured potential-dependent characteristics of SOPC monolayers. Our hybrid study sheds light on phospholipid monolayer stability under different membrane potentials, which is important for understanding membrane processes. This study also illustrates the use of X-ray surface scattering to probe the ordering of surfactant monolayers at an electrified aqueous-organic liquid-liquid interface.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp5098525DOI Listing
July 2015

X-ray studies of interfacial strontium-extractant complexes in a model solvent extraction system.

J Phys Chem B 2014 Oct 15;118(43):12486-500. Epub 2014 Oct 15.

Department of Physics and ‡Department of Chemical Engineering, University of Illinois at Chicago , Chicago, Illinois 60607, United States.

The interfacial behavior of a model solvent extraction liquid-liquid system, consisting of solutions of dihexadecyl phosphate (DHDP) in dodecane and SrCl2 in water, was studied to determine the structure of the interfacial ion-extractant complex and its variation with pH. Previous experiments on a similar extraction system with ErCl3 demonstrated that the kinetics of the extraction process could be greatly retarded by cooling through an adsorption transition, thus providing a method to immobilize ion-extractant complexes at the interface and further characterize them with X-ray interface-sensitive techniques. Here, we use this same method to study the SrCl2 system. X-ray reflectivity and fluorescence near total reflection measured the molecular-scale interfacial structure above and below the adsorption transition for a range of pH. Below the transition, DHDP molecules form a homogeneous monolayer at the interface with Sr(2+) coverage increasing from zero to saturation (one Sr(2+) per two DHDP) within a narrow range of pH. Experimental values of Sr(2+) interfacial density determined from fluorescence measurements are larger than those from reflectivity measurements. Although both techniques probe Sr(2+) bound to DHDP, only the fluorescence provides adequate sensitivity to Sr(2+) in the diffuse double layer. A Stern equation determines the Sr(2+) binding constant from the reflectivity measurements and the additional Sr(2+) measured in the diffuse double layer is accounted for by Gouy-Chapman theory. Above the transition temperature, a dilute concentration of DHDP-Sr complexes resides at the interface, even for temperatures far above the transition. A comparison is made of the structure of the interfacial ion-extractant complex for this divalent metal ion to recent results on trivalent Er(3+) metal ions, which provides insight into the role of metal ion charge on the structure of interfacial ion-extractant complexes, as well as implications for extraction of these two differently charged ions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp508430eDOI Listing
October 2014

Observation of a rare earth ion-extractant complex arrested at the oil-water interface during solvent extraction.

J Phys Chem B 2014 Sep 2;118(36):10662-74. Epub 2014 Sep 2.

Department of Physics, University of Illinois at Chicago , Chicago, Illinois 60607, United States.

Selective extraction of metal ions from a complex aqueous mixture into an organic phase is used to separate toxic or radioactive metals from polluted environments and nuclear waste, as well as to produce industrially relevant metals, such as rare earth ions. Selectivity arises from the choice of an extractant amphiphile, dissolved in the organic phase, which interacts preferentially with the target metal ion. The extractant-mediated process of ion transport from an aqueous to an organic phase takes place at the aqueous-organic interface; nevertheless, little is known about the molecular mechanism of this process despite its importance. Although state-of-the-art X-ray scattering is uniquely capable of probing molecular ordering at a liquid-liquid interface with subnanometer spatial resolution, utilizing this capability to investigate interfacial dynamical processes of short temporal duration remains a challenge. We show that a temperature-driven adsorption transition can be used to turn the extraction on and off by controlling adsorption and desorption of extractants at the oil-water interface. Lowering the temperature through this transition immobilizes a supramolecular ion-extractant complex at the interface during the extraction of rare earth erbium ions. Under the conditions of these experiments, the ion-extractant complexes condense into a two-dimensional inverted bilayer, which is characterized on the molecular scale with synchrotron X-ray reflectivity and fluorescence measurements. Raising the temperature above the transition leads to Er ion extraction as a result of desorption of ion-extractant complexes from the interface into the bulk organic phase. XAFS measurements of the ion-extractant complexes in the bulk organic phase demonstrate that they are similar to the interfacial complexes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp505661eDOI Listing
September 2014

Microphase formation at a 2D solid-gas phase transition.

Soft Matter 2014 Oct;10(37):7353-60

Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA.

Density modulated micro-separated phases (microphases) occur at 2D liquid interfaces in the form of alternating regions of high and low density domains. Brewster angle microscopy (BAM) images demonstrate the existence of microphases in cluster, stripe, and mosaic morphologies at the buried interface between hexane and water with fluoro-alkanol surfactant dissolved in the bulk hexane. At high temperature, the surfactant assembles at the interface in a 2D gaseous state. As the system is cooled additional surfactants condense onto the interface, which undergoes a 2D gas-solid phase transition. Microphase structure is observed within a few degrees of this transition in the form of clusters and labyrinthine stripes. Microphases have been observed previously in a number of other systems; nevertheless, we demonstrate that adsorption transitions at the liquid-liquid interface provide a convenient way to observe a full sequence of temperature-dependent 2D phases, from gas to cluster to stripe to mosaic to inverted stripe phases, as well as coexistence between some of these microphases. Cracking and fracture of the clusters reveal that they are a solid microphase. Theories of microphases often predict a single length scale for cluster and stripe phases as a result of the competition between an attractive and a repulsive interaction. Our observation that two characteristic length scales are required to describe clusters whose diameter is much larger than the stripe period, combined with the solid nature of the clusters, suggests that a long-range elastic interaction is relevant. These results complement earlier X-ray measurements on the same system.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4sm01197jDOI Listing
October 2014

Molecular mechanism for differential recognition of membrane phosphatidylserine by the immune regulatory receptor Tim4.

Proc Natl Acad Sci U S A 2014 Apr 31;111(15):E1463-72. Epub 2014 Mar 31.

Program in Biophysical Sciences, Institute for Biophysical Dynamics, Department of Chemistry, and James Franck Institute, The University of Chicago, Chicago, IL 60637.

Recognition of phosphatidylserine (PS) lipids exposed on the extracellular leaflet of plasma membranes is implicated in both apoptotic cell removal and immune regulation. The PS receptor T cell immunoglobulin and mucin-domain-containing molecule 4 (Tim4) regulates T-cell immunity via phagocytosis of both apoptotic (high PS exposure) and nonapoptotic (intermediate PS exposure) activated T cells. The latter population must be removed at lower efficiency to sensitively control immune tolerance and memory cell population size, but the molecular basis for how Tim4 achieves this sensitivity is unknown. Using a combination of interfacial X-ray scattering, molecular dynamics simulations, and membrane binding assays, we demonstrate how Tim4 recognizes PS in the context of a lipid bilayer. Our data reveal that in addition to the known Ca(2+)-coordinated, single-PS binding pocket, Tim4 has four weaker sites of potential ionic interactions with PS lipids. This organization makes Tim4 sensitive to PS surface concentration in a manner capable of supporting differential recognition on the basis of PS exposure level. The structurally homologous, but functionally distinct, Tim1 and Tim3 are significantly less sensitive to PS surface density, likely reflecting the differences in immunological function between the Tim proteins. These results establish the potential for lipid membrane parameters, such as PS surface density, to play a critical role in facilitating selective recognition of PS-exposing cells. Furthermore, our multidisciplinary approach overcomes the difficulties associated with characterizing dynamic protein/membrane systems to reveal the molecular mechanisms underlying Tim4's recognition properties, and thereby provides an approach capable of providing atomic-level detail to uncover the nuances of protein/membrane interactions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1320174111DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3992656PMC
April 2014

Ion distributions at the water/1,2-dichloroethane interface: potential of mean force approach to analyzing X-ray reflectivity and interfacial tension measurements.

J Phys Chem B 2013 May 22;117(17):5365-78. Epub 2013 Apr 22.

Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States.

We present X-ray reflectivity and interfacial tension measurements of the electrified liquid/liquid interface between two immiscible electrolyte solutions for the purpose of understanding the dependence of interfacial ion distributions on the applied electric potential difference across the interface. The aqueous phase contains alkali-metal chlorides, including LiCl, NaCl, RbCl, or CsCl, and the organic phase is a 1,2-dichloroethane solution of bis(triphenylphosphor anylidene) ammonium tetrakis(pentafluorophenyl)borate (BTPPATPFB). Selected data for a subset of electric potential differences are analyzed to determine the potentials of mean force for Li(+), Rb(+), Cs(+), BTPPA(+), and TPFB(-). These potentials of mean force are then used to analyze both X-ray reflectivity and interfacial tension data measured over a wide range of electric potential differences. Comparison of X-ray reflectivity data for strongly hydrated alkali-metal ions (Li(+) and Na(+)), for which ion pairing to TPFB(-) ions across the interface is not expected, to data for weakly hydrated alkali-metal ions (Rb(+) and Cs(+)) indicates that the Gibbs energy of adsorption due to ion pairing at the interface must be small (<1 k(B)T per ion pair) for both the CsCl and RbCl samples. This paper demonstrates the applicability of the Poisson-Boltzmann potential of mean force approach to the analysis of X-ray reflectivity measurements that probe the nanoscale ion distribution and the consequences of these underlying distributions for thermodynamic studies, such as interfacial tension measurements, that yield quantities related to the integrated ion distribution.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp401892yDOI Listing
May 2013

Tuning ion correlations at an electrified soft interface.

Proc Natl Acad Sci U S A 2012 Dec 21;109(50):20326-31. Epub 2012 Nov 21.

Department of Physics, University of Illinois, Chicago, IL 60607, USA.

Ion distributions play a central role in various settings-from biology, where they mediate the electrostatic interactions between charged biomolecules in solution, to energy storage devices, where they influence the charging properties of supercapacitors. These distributions are determined by interactions dictated by the chemical properties of the ions and their environment as well as the long-range nature of the electrostatic force. Recent theoretical and computational studies have explored the role of correlations between ions, which have been suggested to underlie a number of counterintuitive results, such as like-charge attraction. However, the interdependency between ion correlations and other interactions that ions experience in solution complicates the connection between physical models of ion correlations and the experimental investigation of ion distributions. We exploit the properties of the liquid/liquid interface to vary the coupling strength of ion-ion correlations from weak to strong while monitoring their influence on ion distributions at the nanometer scale with X-ray reflectivity and the macroscopic scale with interfacial tension measurements. These data are in agreement with the predictions of a parameter-free density functional theory that includes ion-ion correlations and ion-solvent interactions over the entire range of experimentally tunable correlation coupling strengths (from 0.8 to 3.7). This study provides evidence for a sharply defined electrical double layer for large coupling strengths in contrast to the diffuse distributions predicted by mean field theory, thereby confirming a common prediction of many ion correlation models. The reported findings represent a significant advance in elucidating the nature and role of ion correlations in charged soft matter.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1214204109DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3528511PMC
December 2012

Communications: Monovalent ion condensation at the electrified liquid/liquid interface.

J Chem Phys 2010 May;132(17):171101

Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, USA.

X-ray reflectivity studies demonstrate the condensation of a monovalent ion at the electrified interface between electrolyte solutions of water and 1,2-dichloroethane. Predictions of the ion distributions by standard Poisson-Boltzmann (Gouy-Chapman) theory are inconsistent with these data at higher applied interfacial electric potentials. Calculations from a Poisson-Boltzmann equation that incorporates a nonmonotonic ion-specific potential of mean force are in good agreement with the data.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3428395DOI Listing
May 2010

Configuration of PKCalpha-C2 domain bound to mixed SOPC/SOPS lipid monolayers.

Biophys J 2009 Nov;97(10):2794-802

Department of Physics, University of Illinois at Chicago, Chicago, Illinois, USA.

X-ray reflectivity measurements are used to determine the configuration of the C2 domain of protein kinase Calpha (PKCalpha-C2) bound to a lipid monolayer of a 7:3 mixture of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1-stearoyl-2-oleoyl-sn-glycero-3-phosphoserine supported on a buffered aqueous solution. The reflectivity is analyzed in terms of the known crystallographic structure of PKCalpha-C2 and a slab model representation of the lipid layer. The configuration of lipid-bound PKCalpha-C2 is described by two angles that define its orientation, theta = 35 degrees +/- 10 degrees and phi =210 degrees +/- 30 degrees, and a penetration depth (=7.5 +/- 2 A) into the lipid layer. In this structure, the beta-sheets of PKCalpha-C2 are nearly perpendicular to the lipid layer and the domain penetrates into the headgroup region of the lipid layer, but not into the tailgroup region. This configuration of PKCalpha-C2 determined by our x-ray reflectivity is consistent with many previous findings, particularly mutational studies, and also provides what we believe is new molecular insight into the mechanism of PKCalpha enzyme activation. Our analysis method, which allows us to test all possible protein orientations, shows that our data cannot be explained by a protein that is orientated parallel to the membrane, as suggested by earlier work.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpj.2009.08.037DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776280PMC
November 2009

Structure and depletion at fluorocarbon and hydrocarbon/water liquid/liquid interfaces.

Phys Rev Lett 2008 Aug 14;101(7):076102. Epub 2008 Aug 14.

Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, USA.

The results of x-ray reflectivity studies of two oil/water (liquid/liquid) interfaces are inconsistent with recent predictions of the presence of a vaporlike depletion region at hydrophobic/aqueous interfaces. One of the oils, perfluorohexane, is a fluorocarbon whose superhydrophobic interface with water provides a stringent test for the presence of a depletion layer. The other oil, heptane, is a hydrocarbon and, therefore, is more relevant to the study of biomolecular hydrophobicity. These results are consistent with the subangstrom proximity of water to soft hydrophobic materials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.101.076102DOI Listing
August 2008

Molecular ordering and phase behavior of surfactants at water-oil interfaces as probed by X-ray surface scattering.

Annu Rev Phys Chem 2008 ;59:153-77

Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, USA.

Surfactants have their primary utility, both scientific and industrial, at the liquid-liquid interface. We review recent X-ray surface scattering experiments that probe the molecular ordering and phase behavior of surfactants at the water-oil interface. The presence of the oil modifies the interfacial ordering in a manner that cannot be understood simply from analogies with studies of Langmuir monolayers of surfactants at the water-vapor interface or from the traditional view that the solvent is fully mixed with the interfacial surfactants. These studies explored the role of chain flexibility and head group interactions on the ordering of long-chain alkanols and alkanoic acids. Small changes in the surfactant may produce large changes in the interfacial ordering. The interfacial monolayer can be spatially homogeneous or inhomogeneous. Investigators have observed interfacial phase transitions as a function of temperature between homogenous phases, as well as between homogeneous and inhomogeneous phases. Finally, varying the solvent chain length can alter the fundamental character of the phase transitions and lead to the formation of multilayer interfacial structures.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093822DOI Listing
July 2008

Orientation and penetration depth of monolayer-bound p40phox-PX.

Biochemistry 2006 Nov;45(45):13566-75

Department of Physics, University of Illinois, Chicago, Illinois 60607-7059, USA.

X-ray reflectivity was used to study the interaction of the PX domain of p40(phox) protein (p40(phox)-PX) with a Langmuir monolayer of a mixture of SOPC (1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine), SOPS (1-stearoyl-2-oleoyl-sn-glycero-3-phosphoserine), and DPPtdIns(3)P (1,2-dipalmitoylphosphatidylinositol 3-phosphate) lipids supported on a buffered aqueous solution. The reflectivity is analyzed in terms of the known crystallographic structure of the p40(phox)-PX domain and a slab model that represents the lipid layer, yielding an electron density profile of the lipid layer and bound PX domains. This analysis determines the angular orientation and penetration depth of the p40(phox)-PX domain bound to the SOPC/SOPS/DPPtdIns(3)P monolayer. The best fit orientation is characterized by the following angles: theta = 30 +/- 10 degrees and phi = 140 +/- 30 degrees. These angles describe rotations, about axes in a coordinate system fixed to the domain, that are required to orient the domain with respect to the lipid layer at the interface. The protein penetrated into the lipid layer by 9 +/- 2 A, indicating that the protein penetrated into the headgroup region, but not deeply into the hydrocarbon region of the monolayer. In this analysis, polar Tyr(94) and hydrophobic Val(95) penetrated deepest into the lipid monolayer. The backbone of these residues was approximately 5 A above the headgroup-buffer interface, i.e., at the level of the SOPC/SOPS lipid phosphates. Positively charged Lys(92) and Lys(98) were also near the SOPC/SOPS lipid phosphates. This position of the protein allows for a favorable electrostatic contribution to binding.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi061133lDOI Listing
November 2006

Tail ordering due to headgroup hydrogen bonding interactions in surfactant monolayers at the water-oil interface.

J Phys Chem B 2006 Oct;110(39):19093-6

Interactions between surfactants, and the resultant ordering of surfactant assemblies, can be tuned by the appropriate choice of head- and tailgroups. Detailed studies of the ordering of monolayers of long-chain n-alkanoic and n-alkanol monolayers at the water-vapor interface have demonstrated that rigid-rod all-trans ordering of the tailgroups is maintained upon replacing the alcohol with a carboxylic acid headgroup. In contrast, at the water-hexane liquid-liquid interface, we demonstrate that substitution of the -CH(2)OH with the -COOH headgroup produces a major conformational change of the tailgroup from disordered to ordered. This is demonstrated by the electron density profiles of triacontanol (CH(3)(CH(2))(29)OH) and triacontanoic acid (CH(3)(CH(2))(28)COOH) monolayers at the water-hexane interface, as determined by X-ray reflectivity measurements. Molecular dynamics simulations illustrate the presence of hydrogen bonding between the triacontanoic acid headgroups that is likely responsible for the tail ordering. A simple free energy illustrates the interplay between the attractive hydrogen bonding and the ordering of the tailgroup.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp064120qDOI Listing
October 2006

X-ray reflectivity and interfacial tension study of the structure and phase behavior of the interface between water and mixed surfactant solutions of CH3(CH2)19OH and CF3(CF2)7(CH2)2OH in hexane.

J Phys Chem B 2005 Jan;109(3):1210-25

Department of Physics, University of Illinois at Chicago, Illinois 60607, USA.

The interface between water and mixed surfactant solutions of CH(3)(CH(2))(19)OH and CF(3)(CF(2))(7)(CH(2))(2)OH in hexane was studied with interfacial tension and X-ray reflectivity measurements. Measurements of the tension as a function of temperature for a range of total bulk surfactant concentrations and for three different values of the molal ratio of fluorinated to total surfactant concentration (0.25, 0.28, and 0.5) determined that the interface can be in three different monolayer phases. The interfacial excess entropy determined for these phases suggests that two of the phases are condensed single surfactant monolayers of CH(3)(CH(2))(19)OH and CF(3)(CF(2))(7)(CH(2))(2)OH. By studying four different compositions as a function of temperature, X-ray reflectivity was used to determine the structure of these monolayers in all three phases at the liquid-liquid interface. The X-ray reflectivity measurements were analyzed with a layer model to determine the electron density and thickness of the headgroup and tailgroup layers. The reflectivity demonstrates that phases 1 and 2 correspond to an interface fully covered by only one of the surfactants (liquid monolayer of CH(3)(CH(2))(19)OH in phase 1 and a solid condensed monolayer of CF(3)(CF(2))(7)(CH(2))(2)OH in phase 2). This was determined by analysis of the electron density profile as well as by direct comparison to reflectivity studies of the liquid-liquid interface in systems containing only one of the surfactants (plus hexane and water). The liquid monolayer of CH(3)(CH(2))(19)OH undergoes a transition to the solid monolayer of CF(3)(CF(2))(7)(CH(2))(2)OH with increasing temperature. Phase 3 and the transition regions between phases 1 and 2 consist of a mixed monolayer at the interface that contains domains of the two surfactants. In phase 3 the interface also contains gaseous regions that occupy progressively more of the interface as the temperature is increased. The reflectivity determined the coverage of the surfactant domains at the interface. A simple model is presented that predicts the basic features of the domain coverage as a function of temperature for the mixed surfactant system from the behavior of the single surfactant systems.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp045887qDOI Listing
January 2005

Structure of the interface between two polar liquids: nitrobenzene and water.

J Phys Chem B 2006 Mar;110(10):4527-30

Synchrotron X-ray reflectivity is used to study the electron density as a function of depth through the bulk nitrobenzene-water interface at four different temperatures. The measured interfacial width differs from the predictions of capillary wave theory with a progressively smaller deviation as the temperature is raised. Computer simulations suggest the presence of both molecular layering and dipole ordering parallel to the interface. Either layering or a bending rigidity, that can result from dipole ordering, can explain these measurements.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp057103uDOI Listing
March 2006

Ion distributions near a liquid-liquid interface.

Science 2006 Jan;311(5758):216-8

Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA.

Mean field theories of ion distributions, such as the Gouy-Chapman theory that describes the distribution near a charged planar surface, ignore the molecular-scale structure in the liquid solution. The predictions of the Gouy-Chapman theory vary substantially from our x-ray reflectivity measurements of the interface between two electrolyte solutions. Molecular dynamics simulations, which include the liquid structure, were used to calculate the potential of mean force on a single ion. We used this potential of mean force in a generalized Poisson-Boltzmann equation to predict the full ion distributions. These distributions agree with our measurements without any adjustable parameters.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1120392DOI Listing
January 2006

Determining the conformation of an adsorbed Br-PEG-peptide by long period X-ray standing wave fluorescence.

Langmuir 2005 Aug;21(17):7899-906

Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607-7061, USA.

Long-period X-ray standing wave fluorescence (XSW) and X-ray reflectivity techniques are employed to probe the conformation of a Br-poly(ethylene glycol) (PEG)-peptide adsorbate at the hydrated interface of a polystyrene substrate. The Br atom on this Br-PEG-peptide construct serves as a marker atom allowing determination by XSW of its position and distribution with respect to the adsorption surface with angstrom resolution. Adsorption occurs on native or ion-beam-modified polystyrene films that are spin-coated onto a Si substrate and display either nonpolar or polar surfaces, respectively. A compact, oriented monolayer of Br-PEG-peptide can be formed with the peptide end adsorbed onto the polar surface and the PEG end terminating with the Br tag extending into the aqueous phase. The 108-141 A distance of the Br atom from the polystyrene surface in this oriented monolayer is similar to the estimated approximately 150 A length of the extended Br-PEG-peptide. This Br-polystyrene distance depends on adsorption time and surface properties prior to adsorption. Incomplete multilayers form on the polar surface after sufficient adsorption time elapses. By contrast, adsorption onto the nonpolar surface is submonolayer, patchy, and highly disordered with an isotropic Br distribution. Overall, this combination of X-ray surface scattering techniques with a novel sample preparation strategy has several advantages as a real space probe of adsorbed or covalently bound biomolecules at the liquid-solid interface.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/la0505115DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583370PMC
August 2005

X-ray reflectivity studies of cPLA2{alpha}-C2 domains adsorbed onto Langmuir monolayers of SOPC.

Biophys J 2005 Sep 1;89(3):1861-73. Epub 2005 Jul 1.

Department of Physics, Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA.

X-ray reflectivity is used to study the interaction of C2 domains of cytosolic phospholipase A(2) (cPLA(2)alpha-C2) with a Langmuir monolayer of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) supported on a buffered aqueous solution containing Ca(2+). The reflectivity is analyzed in terms of the known crystallographic structure of cPLA(2)alpha-C2 domains and a slab model representing the lipid layer to yield an electron density profile of the lipid layer and bound C2 domains. This new method of analysis determines the angular orientation and penetration depth of the cPLA(2)alpha-C2 domains bound to the SOPC monolayer, information not available from the standard slab model analysis of x-ray reflectivity. The best-fit orientation places the protein-bound Ca(2+) ions within 1 A of the lipid phosphate group (with an accuracy of +/-3 A). Hydrophobic residues of the calcium-binding loops CBL1 and CBL3 penetrate deepest into the lipid layer, with a 2 A penetration into the tailgroup region. X-ray measurements with and without the C2 domain indicate that there is a loss of electrons in the headgroup region of the lipid monolayer upon binding of the domains. We suggest that this is due to a loss of water molecules bound to the headgroup. Control experiments with a non-calcium buffer and with domain mutants confirm that the cPLA(2)alpha-C2 binding to the SOPC monolayer is Ca(2+)-dependent and that the hydrophobic residues in the calcium-binding loops are critical for membrane binding. These results indicate that an entropic component (due to water loss) as well as electrostatic and hydrophobic interactions contributes to the binding mechanism.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1529/biophysj.105.061515DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1366689PMC
September 2005

X-ray studies of the interface between two polar liquids: neat and with electrolytes.

Faraday Discuss 2005 ;129:23-34; discussion 89-109

Department of Physics (M/C 273), University of Illinois at Chicago, Chicago, IL 60607-7059, USA.

We demonstrate the use of X-ray reflectivity to probe the electron density profile normal to the interface between two polar liquids. Measurements of the interfacial width at the neat nitrobenzene/water and the neat water/2-heptanone interfaces are presented. These widths are consistent with predictions from capillary wave theory that describe thermal interfacial fluctuations determined by the tension and bending rigidity of the interface. Variation of the temperature of the water/nitrobenzene interface from 25 degrees C to 55 degrees C indicates that the role of the bending rigidity decreases with increasing temperature. X-ray reflectivity measurements of the electrified interface between an aqueous solution of BaCl2 and a nitrobenzene solution of TBATPB demonstrate the sensitivity of these measurements to the electrolyte distribution at the interface. A preliminary analysis of these data illustrates the inadequacy of the simplest, classical Gouy-Chapman theory of the electrolyte distribution.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/b405555aDOI Listing
March 2005

Molecular ordering and phase transitions in alkanol monolayers at the water-hexane interface.

J Chem Phys 2004 Jun;120(24):11822-38

University of Chicago, Center for Advanced Radiation Sources, USA.

The interface between bulk water and bulk hexane solutions of n-alkanols (H(CH(2))(m)OH, where m=20, 22, 24, or 30) is studied with x-ray reflectivity, x-ray off-specular diffuse scattering, and interfacial tension measurements. The alkanols adsorb to the interface to form a monolayer. The highest density, lowest temperature monolayers contain alkanol molecules with progressive disordering of the chain from the -CH(2)OH to the -CH(3) group. In the terminal half of the chain that includes the -CH(3) group the chain density is similar to that observed in bulk liquid alkanes just above their freezing temperature. The density in the alkanol headgroup region is 10% greater than either bulk water or the ordered headgroup region found in alkanol monolayers at the water-vapor interface. We conjecture that this higher density is a result of water penetration into the headgroup region of the disordered monolayer. A ratio of 1:3 water to alkanol molecules is consistent with our data. We also place an upper limit of one hexane to five or six alkanol molecules mixed into the alkyl chain region of the monolayer. In contrast, H(CH(2))(30)OH at the water-vapor interface forms a close-packed, ordered phase of nearly rigid rods. Interfacial tension measurements as a function of temperature reveal a phase transition at the water-hexane interface with a significant change in interfacial excess entropy. This transition is between a low temperature interface that is nearly fully covered with alkanols to a higher temperature interface with a much lower density of alkanols. The transition for the shorter alkanols appears to be first order whereas the transition for the longer alkanols appears to be weakly first order or second order. The x-ray data are consistent with the presence of monolayer domains at the interface and determine the domain coverage (fraction of interface covered by alkanol domains) as a function of temperature. This temperature dependence is consistent with a theoretical model for a second order phase transition that accounts for the domain stabilization as a balance between line tension and long range dipole forces. Several aspects of our measurements indicate that the presence of domains represents the appearance of a spatially inhomogeneous phase rather than the coexistence of two homogeneous phases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.1752888DOI Listing
June 2004

X-ray scattering of thin liquid films: beyond the harmonic approximation.

Phys Rev E Stat Nonlin Soft Matter Phys 2002 Jun 25;65(6 Pt 1):061608. Epub 2002 Jun 25.

Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China.

We calculate the x-ray scattering from coupled capillary fluctuations of thin liquid films, taking into account an asymmetric interfacial interaction potential. Harmonic expansion of the potential around its minimum produces the well-known Kiessig fringes in both specular reflectivity and longitudinal diffuse scattering. The addition of a cubic term to the expansion, representing the asymmetry, leads to q(z)-dependent changes of the modulation period of the Kiessig fringes. The cubic term produces a relative phase shift between the interference fringes of the specular reflectivity and the off-specular longitudinal diffuse scattering. It is suggested that these effects may be used to estimate, via x-ray scattering, the interfacial potential of thin liquid films.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.65.061608DOI Listing
June 2002