Publications by authors named "Mark J Daly"

410 Publications

Hematopoietic mosaic chromosomal alterations increase the risk for diverse types of infection.

Nat Med 2021 Jun 7;27(6):1012-1024. Epub 2021 Jun 7.

Institute for Molecular Medicine Finland, Helsinki, Finland.

Age is the dominant risk factor for infectious diseases, but the mechanisms linking age to infectious disease risk are incompletely understood. Age-related mosaic chromosomal alterations (mCAs) detected from genotyping of blood-derived DNA, are structural somatic variants indicative of clonal hematopoiesis, and are associated with aberrant leukocyte cell counts, hematological malignancy, and mortality. Here, we show that mCAs predispose to diverse types of infections. We analyzed mCAs from 768,762 individuals without hematological cancer at the time of DNA acquisition across five biobanks. Expanded autosomal mCAs were associated with diverse incident infections (hazard ratio (HR) 1.25; 95% confidence interval (CI) = 1.15-1.36; P = 1.8 × 10), including sepsis (HR 2.68; 95% CI = 2.25-3.19; P = 3.1 × 10), pneumonia (HR 1.76; 95% CI = 1.53-2.03; P = 2.3 × 10), digestive system infections (HR 1.51; 95% CI = 1.32-1.73; P = 2.2 × 10) and genitourinary infections (HR 1.25; 95% CI = 1.11-1.41; P = 3.7 × 10). A genome-wide association study of expanded mCAs identified 63 loci, which were enriched at transcriptional regulatory sites for immune cells. These results suggest that mCAs are a marker of impaired immunity and confer increased predisposition to infections.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41591-021-01371-0DOI Listing
June 2021

Association of the MYOC p.(Gln368Ter) Variant With Glaucoma in a Finnish Population.

JAMA Ophthalmol 2021 Jun 3. Epub 2021 Jun 3.

Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland.

Importance: The c.1102C>T, p.(Gln368Ter) variant in the myocilin (MYOC) gene is a known risk allele for glaucoma. It is the most common MYOC risk variant for glaucoma among individuals of European ancestry, and its prevalence is highest in Finland. Furthermore, exfoliation syndrome has high prevalence in Scandinavia, making the Finnish population ideal to study the association of the variant with different types of glaucoma.

Objectives: To examine the association and penetrance of MYOC p.(Gln368Ter) (rs74315329) variant with different types of glaucoma in a Finnish population.

Design, Setting, And Participants: This genetic association study included individuals of Finnish ancestry in the FinnGen project. The participants were collected from Finnish biobanks, and the disease end points were defined using nationwide registries. The MYOC c.1102C>T variant was either directly genotyped or imputed with microarrays. Recruitment of samples to FinnGen was initiated in 2017, and data analysis was performed between December 2019 and May 2020.

Main Outcomes And Measures: The main outcomes were odds ratios (ORs) and penetrance with different types of glaucoma and in different age groups.

Results: A total of 218 792 individuals were included in this study (mean [SD] age 52.4 [17.5] years; 123 579 women [56.5%]), including 8591 (3.9%) with glaucoma, 3412 (1.6%) with primary open-angle glaucoma, 1515 (0.7%) with exfoliation glaucoma, 892 (0.4%) with normal-tension glaucoma, and 4766 (2.2%) with suspected glaucoma. The minor allele frequency of MYOC p.(Gln368Ter) was 0.28%. Individuals with the heterozygous variant had higher odds of primary open-angle glaucoma (OR, 3.36; 95% CI, 2.55-4.37), overall glaucoma (OR, 2.58; 95% CI, 2.12-3.13), suspected glaucoma (OR, 2.53; 95% CI, 1.93-3.26), exfoliation glaucoma (OR, 2.61; 95% CI, 1.60-4.02), and undergoing glaucoma-related operations (OR, 5.45; 95% CI, 2.95-9.28). The penetrance of heterozygous MYOC p.(Gln368Ter) was 5.2% in individuals with primary open-angle glaucoma, 9.6% in individuals with glaucoma, 5.4% in individuals with suspected glaucoma, and 1.9% in individuals with exfoliation glaucoma. There was no significant association with normal-tension glaucoma (OR, 1.69; 95% CI, 0.72-3.35).

Conclusions And Relevance: This genetic association study found that the MYOC p.(Gln368Ter) variant was associated with exfoliation glaucoma. The association with normal-tension glaucoma could not be replicated. These findings suggest that MYOC p.(Gln368Ter) was associated with open-angle glaucoma and exfoliation glaucoma in a Finnish population.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamaophthalmol.2021.1610DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8176385PMC
June 2021

ANGPTL8 protein-truncating variant associated with lower serum triglycerides and risk of coronary disease.

PLoS Genet 2021 Apr 28;17(4):e1009501. Epub 2021 Apr 28.

Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.

Protein-truncating variants (PTVs) affecting dyslipidemia risk may point to therapeutic targets for cardiometabolic disease. Our objective was to identify PTVs that were associated with both lipid levels and the risk of coronary artery disease (CAD) or type 2 diabetes (T2D) and assess their possible associations with risks of other diseases. To achieve this aim, we leveraged the enrichment of PTVs in the Finnish population and tested the association of low-frequency PTVs in 1,209 genes with serum lipid levels in the Finrisk Study (n = 23,435). We then tested which of the lipid-associated PTVs were also associated with the risks of T2D or CAD, as well as 2,683 disease endpoints curated in the FinnGen Study (n = 218,792). Two PTVs were associated with both lipid levels and the risk of CAD or T2D: triglyceride-lowering variants in ANGPTL8 (-24.0[-30.4 to -16.9] mg/dL per rs760351239-T allele, P = 3.4 × 10-9) and ANGPTL4 (-14.4[-18.6 to -9.8] mg/dL per rs746226153-G allele, P = 4.3 × 10-9). The risk of T2D was lower in carriers of the ANGPTL4 PTV (OR = 0.70[0.60-0.81], P = 2.2 × 10-6) than noncarriers. The odds of CAD were 47% lower in carriers of a PTV in ANGPTL8 (OR = 0.53[0.37-0.76], P = 4.5 × 10-4) than noncarriers. Finally, the phenome-wide scan of the ANGPTL8 PTV showed that the ANGPTL8 PTV carriers were less likely to use statin therapy (68,782 cases, OR = 0.52[0.40-0.68], P = 1.7 × 10-6) compared to noncarriers. Our findings provide genetic evidence of potential long-term efficacy and safety of therapeutic targeting of dyslipidemias.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1009501DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8109807PMC
April 2021

Chromosome Xq23 is associated with lower atherogenic lipid concentrations and favorable cardiometabolic indices.

Nat Commun 2021 04 12;12(1):2182. Epub 2021 Apr 12.

Division of Cardiology, George Washington University School of Medicine and Healthcare Sciences, Washington, DC, USA.

Autosomal genetic analyses of blood lipids have yielded key insights for coronary heart disease (CHD). However, X chromosome genetic variation is understudied for blood lipids in large sample sizes. We now analyze genetic and blood lipid data in a high-coverage whole X chromosome sequencing study of 65,322 multi-ancestry participants and perform replication among 456,893 European participants. Common alleles on chromosome Xq23 are strongly associated with reduced total cholesterol, LDL cholesterol, and triglycerides (min P = 8.5 × 10), with similar effects for males and females. Chromosome Xq23 lipid-lowering alleles are associated with reduced odds for CHD among 42,545 cases and 591,247 controls (P = 1.7 × 10), and reduced odds for diabetes mellitus type 2 among 54,095 cases and 573,885 controls (P = 1.4 × 10). Although we observe an association with increased BMI, waist-to-hip ratio adjusted for BMI is reduced, bioimpedance analyses indicate increased gluteofemoral fat, and abdominal MRI analyses indicate reduced visceral adiposity. Co-localization analyses strongly correlate increased CHRDL1 gene expression, particularly in adipose tissue, with reduced concentrations of blood lipids.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-22339-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8042019PMC
April 2021

Genome-wide enhancer maps link risk variants to disease genes.

Nature 2021 May 7;593(7858):238-243. Epub 2021 Apr 7.

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Genome-wide association studies (GWAS) have identified thousands of noncoding loci that are associated with human diseases and complex traits, each of which could reveal insights into the mechanisms of disease. Many of the underlying causal variants may affect enhancers, but we lack accurate maps of enhancers and their target genes to interpret such variants. We recently developed the activity-by-contact (ABC) model to predict which enhancers regulate which genes and validated the model using CRISPR perturbations in several cell types. Here we apply this ABC model to create enhancer-gene maps in 131 human cell types and tissues, and use these maps to interpret the functions of GWAS variants. Across 72 diseases and complex traits, ABC links 5,036 GWAS signals to 2,249 unique genes, including a class of 577 genes that appear to influence multiple phenotypes through variants in enhancers that act in different cell types. In inflammatory bowel disease (IBD), causal variants are enriched in predicted enhancers by more than 20-fold in particular cell types such as dendritic cells, and ABC achieves higher precision than other regulatory methods at connecting noncoding variants to target genes. These variant-to-function maps reveal an enhancer that contains an IBD risk variant and that regulates the expression of PPIF to alter the membrane potential of mitochondria in macrophages. Our study reveals principles of genome regulation, identifies genes that affect IBD and provides a resource and generalizable strategy to connect risk variants of common diseases to their molecular and cellular functions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03446-xDOI Listing
May 2021

Low-coverage sequencing cost-effectively detects known and novel variation in underrepresented populations.

Am J Hum Genet 2021 04 25;108(4):656-668. Epub 2021 Mar 25.

Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.

Genetic studies in underrepresented populations identify disproportionate numbers of novel associations. However, most genetic studies use genotyping arrays and sequenced reference panels that best capture variation most common in European ancestry populations. To compare data generation strategies best suited for underrepresented populations, we sequenced the whole genomes of 91 individuals to high coverage as part of the Neuropsychiatric Genetics of African Population-Psychosis (NeuroGAP-Psychosis) study with participants from Ethiopia, Kenya, South Africa, and Uganda. We used a downsampling approach to evaluate the quality of two cost-effective data generation strategies, GWAS arrays versus low-coverage sequencing, by calculating the concordance of imputed variants from these technologies with those from deep whole-genome sequencing data. We show that low-coverage sequencing at a depth of ≥4× captures variants of all frequencies more accurately than all commonly used GWAS arrays investigated and at a comparable cost. Lower depths of sequencing (0.5-1×) performed comparably to commonly used low-density GWAS arrays. Low-coverage sequencing is also sensitive to novel variation; 4× sequencing detects 45% of singletons and 95% of common variants identified in high-coverage African whole genomes. Low-coverage sequencing approaches surmount the problems induced by the ascertainment of common genotyping arrays, effectively identify novel variation particularly in underrepresented populations, and present opportunities to enhance variant discovery at a cost similar to traditional approaches.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.03.012DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059370PMC
April 2021

Changes in the fine-scale genetic structure of Finland through the 20th century.

PLoS Genet 2021 Mar 4;17(3):e1009347. Epub 2021 Mar 4.

Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.

Information about individual-level genetic ancestry is central to population genetics, forensics and genomic medicine. So far, studies have typically considered genetic ancestry on a broad continental level, and there is much less understanding of how more detailed genetic ancestry profiles can be generated and how accurate and reliable they are. Here, we assess these questions by developing a framework for individual-level ancestry estimation within a single European country, Finland, and we apply the framework to track changes in the fine-scale genetic structure throughout the 20th century. We estimate the genetic ancestry for 18,463 individuals from the National FINRISK Study with respect to up to 10 genetically and geographically motivated Finnish reference groups and illustrate the annual changes in the fine-scale genetic structure over the decades from 1920s to 1980s for 12 geographic regions of Finland. We detected major changes after a sudden, internal migration related to World War II from the region of ceded Karelia to the other parts of the country as well as the effect of urbanization starting from the 1950s. We also show that while the level of genetic heterogeneity in general increases towards the present day, its rate of change has considerable differences between the regions. To our knowledge, this is the first study that estimates annual changes in the fine-scale ancestry profiles within a relatively homogeneous European country and demonstrates how such information captures a detailed spatial and temporal history of a population. We provide an interactive website for the general public to examine our results.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1009347DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7932171PMC
March 2021

Inflammation status modulates the effect of host genetic variation on intestinal gene expression in inflammatory bowel disease.

Nat Commun 2021 02 18;12(1):1122. Epub 2021 Feb 18.

Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands.

More than 240 genetic risk loci have been associated with inflammatory bowel disease (IBD), but little is known about how they contribute to disease development in involved tissue. Here, we hypothesized that host genetic variation affects gene expression in an inflammation-dependent way, and investigated 299 snap-frozen intestinal biopsies from inflamed and non-inflamed mucosa from 171 IBD patients. RNA-sequencing was performed, and genotypes were determined using whole exome sequencing and genome wide genotyping. In total, 28,746 genes and 6,894,979 SNPs were included. Linear mixed models identified 8,881 independent intestinal cis-expression quantitative trait loci (cis-eQTLs) (FDR < 0.05) and interaction analysis revealed 190 inflammation-dependent intestinal cis-eQTLs (FDR < 0.05), including known IBD-risk genes and genes encoding immune-cell receptors and antibodies. The inflammation-dependent cis-eQTL SNPs (eSNPs) mainly interact with prevalence of immune cell types. Inflammation-dependent intestinal cis-eQTLs reveal genetic susceptibility under inflammatory conditions that can help identify the cell types involved in and the pathways underlying inflammation, knowledge that may guide future drug development and profile patients for precision medicine in IBD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-21458-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7892863PMC
February 2021

Whole-genome sequencing of African Americans implicates differential genetic architecture in inflammatory bowel disease.

Am J Hum Genet 2021 03 17;108(3):431-445. Epub 2021 Feb 17.

Division of Gastroenterology, Hepatology and Nutrition, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, VA 23284, USA.

Whether or not populations diverge with respect to the genetic contribution to risk of specific complex diseases is relevant to understanding the evolution of susceptibility and origins of health disparities. Here, we describe a large-scale whole-genome sequencing study of inflammatory bowel disease encompassing 1,774 affected individuals and 1,644 healthy control Americans with African ancestry (African Americans). Although no new loci for inflammatory bowel disease are discovered at genome-wide significance levels, we identify numerous instances of differential effect sizes in combination with divergent allele frequencies. For example, the major effect at PTGER4 fine maps to a single credible interval of 22 SNPs corresponding to one of four independent associations at the locus in European ancestry individuals but with an elevated odds ratio for Crohn disease in African Americans. A rare variant aggregate analysis implicates Ca-binding neuro-immunomodulator CALB2 in ulcerative colitis. Highly significant overall overlap of common variant risk for inflammatory bowel disease susceptibility between individuals with African and European ancestries was observed, with 41 of 241 previously known lead variants replicated and overall correlations in effect sizes of 0.68 for combined inflammatory bowel disease. Nevertheless, subtle differences influence the performance of polygenic risk scores, and we show that ancestry-appropriate weights significantly improve polygenic prediction in the highest percentiles of risk. The median amount of variance explained per locus remains the same in African and European cohorts, providing evidence for compensation of effect sizes as allele frequencies diverge, as expected under a highly polygenic model of disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.02.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8008495PMC
March 2021

Exome sequencing in patient-parent trios suggests new candidate genes for early-onset primary sclerosing cholangitis.

Liver Int 2021 May 11;41(5):1044-1057. Epub 2021 Mar 11.

Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.

Background & Aims: Primary sclerosing cholangitis (PSC) is a rare bile duct disease strongly associated with inflammatory bowel disease (IBD). Whole-exome sequencing (WES) has contributed to understanding the molecular basis of very early-onset IBD, but rare protein-altering genetic variants have not been identified for early-onset PSC. We performed WES in patients diagnosed with PSC ≤ 12 years to investigate the contribution of rare genetic variants to early-onset PSC.

Methods: In this multicentre study, WES was performed on 87 DNA samples from 29 patient-parent trios with early-onset PSC. We selected rare (minor allele frequency < 2%) coding and splice-site variants that matched recessive (homozygous and compound heterozygous variants) and dominant (de novo) inheritance in the index patients. Variant pathogenicity was predicted by an in-house developed algorithm (GAVIN), and PSC-relevant variants were selected using gene expression data and gene function.

Results: In 22 of 29 trios we identified at least 1 possibly pathogenic variant. We prioritized 36 genes, harbouring a total of 54 variants with predicted pathogenic effects. In 18 genes, we identified 36 compound heterozygous variants, whereas in the other 18 genes we identified 18 de novo variants. Twelve of 36 candidate risk genes are known to play a role in transmembrane transport, adaptive and innate immunity, and epithelial barrier function.

Conclusions: The 36 candidate genes for early-onset PSC need further verification in other patient cohorts and evaluation of gene function before a causal role can be attributed to its variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/liv.14831DOI Listing
May 2021

Publisher Correction: Clinical use of current polygenic risk scores may exacerbate health disparities.

Nat Genet 2021 May;53(5):763

Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-021-00797-zDOI Listing
May 2021

Tractor uses local ancestry to enable the inclusion of admixed individuals in GWAS and to boost power.

Nat Genet 2021 02 18;53(2):195-204. Epub 2021 Jan 18.

Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.

Admixed populations are routinely excluded from genomic studies due to concerns over population structure. Here, we present a statistical framework and software package, Tractor, to facilitate the inclusion of admixed individuals in association studies by leveraging local ancestry. We test Tractor with simulated and empirical two-way admixed African-European cohorts. Tractor generates accurate ancestry-specific effect-size estimates and P values, can boost genome-wide association study (GWAS) power and improves the resolution of association signals. Using a local ancestry-aware regression model, we replicate known hits for blood lipids, discover novel hits missed by standard GWAS and localize signals closer to putative causal variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-020-00766-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867648PMC
February 2021

Genetics of 35 blood and urine biomarkers in the UK Biobank.

Nat Genet 2021 02 18;53(2):185-194. Epub 2021 Jan 18.

Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, USA.

Clinical laboratory tests are a critical component of the continuum of care. We evaluate the genetic basis of 35 blood and urine laboratory measurements in the UK Biobank (n = 363,228 individuals). We identify 1,857 loci associated with at least one trait, containing 3,374 fine-mapped associations and additional sets of large-effect (>0.1 s.d.) protein-altering, human leukocyte antigen (HLA) and copy number variant (CNV) associations. Through Mendelian randomization (MR) analysis, we discover 51 causal relationships, including previously known agonistic effects of urate on gout and cystatin C on stroke. Finally, we develop polygenic risk scores (PRSs) for each biomarker and build 'multi-PRS' models for diseases using 35 PRSs simultaneously, which improved chronic kidney disease, type 2 diabetes, gout and alcoholic cirrhosis genetic risk stratification in an independent dataset (FinnGen; n = 135,500) relative to single-disease PRSs. Together, our results delineate the genetic basis of biomarkers and their causal influences on diseases and improve genetic risk stratification for common diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-020-00757-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867639PMC
February 2021

Common and Rare Variant Prediction and Penetrance of IBD in a Large, Multi-ethnic, Health System-based Biobank Cohort.

Gastroenterology 2021 Apr 24;160(5):1546-1557. Epub 2020 Dec 24.

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York. Electronic address:

Background And Aims: Polygenic risk scores (PRS) may soon be used to predict inflammatory bowel disease (IBD) risk in prevention efforts. We leveraged exome-sequence and single nucleotide polymorphism (SNP) array data from 29,358 individuals in the multiethnic, randomly ascertained health system-based BioMe biobank to define effects of common and rare IBD variants on disease prediction and pathophysiology.

Methods: PRS were calculated from European, African American, and Ashkenazi Jewish (AJ) reference case-control studies, and a meta-GWAS run using all three association datasets. PRS were then combined using regression to assess which combination of scores best predicted IBD status in European, AJ, Hispanic, and African American cohorts in BioMe. Additionally, rare variants were assessed in genes associated with very early-onset IBD (VEO-IBD), by estimating genetic penetrance in each BioMe population.

Results: Combining risk scores based on association data from distinct ancestral populations improved IBD prediction for every population in BioMe and significantly improved prediction among European ancestry UK Biobank individuals. Lower predictive power for non-Europeans was observed, reflecting in part substantially lower African IBD case-control reference sizes. We replicated associations for two VEO-IBD genes, ADAM17 and LRBA, with high dominant model penetrance in BioMe. Autosomal recessive LRBA risk alleles are associated with severe, early-onset autoimmunity; we show that heterozygous carriage of an African-predominant LRBA protein-altering allele is associated with significantly decreased LRBA and CTLA-4 expression with T-cell activation.

Conclusions: Greater genetic diversity in African populations improves prediction across populations, and generalizes some VEO-IBD genes. Increasing African American IBD case-collections should be prioritized to reduce health disparities and enhance pathophysiological insight.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.gastro.2020.12.034DOI Listing
April 2021

Hematopoietic mosaic chromosomal alterations and risk for infection among 767,891 individuals without blood cancer.

medRxiv 2020 Nov 16. Epub 2020 Nov 16.

Age is the dominant risk factor for infectious diseases, but the mechanisms linking the two are incompletely understood . Age-related mosaic chromosomal alterations (mCAs) detected from blood-derived DNA genotyping, are structural somatic variants associated with aberrant leukocyte cell counts, hematological malignancy, and mortality . Whether mCAs represent independent risk factors for infection is unknown. Here we use genome-wide genotyping of blood DNA to show that mCAs predispose to diverse infectious diseases. We analyzed mCAs from 767,891 individuals without hematological cancer at DNA acquisition across four countries. Expanded mCA (cell fraction >10%) prevalence approached 4% by 60 years of age and was associated with diverse incident infections, including sepsis, pneumonia, and coronavirus disease 2019 (COVID-19) hospitalization. A genome-wide association study of expanded mCAs identified 63 significant loci. Germline genetic alleles associated with expanded mCAs were enriched at transcriptional regulatory sites for immune cells. Our results link mCAs with impaired immunity and predisposition to infections. Furthermore, these findings may also have important implications for the ongoing COVID-19 pandemic, particularly in prioritizing individual preventive strategies and evaluating immunization responses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2020.11.12.20230821DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7685330PMC
November 2020

Not All Autism Genes Are Created Equal: A Response to Myers et al.

Am J Hum Genet 2020 11;107(5):1000-1003

Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2020.09.013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7675033PMC
November 2020

A missense variant in confers risk for Crohn's disease by disrupting manganese homeostasis and intestinal barrier integrity.

Proc Natl Acad Sci U S A 2020 11 2;117(46):28930-28938. Epub 2020 Nov 2.

Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142;

Common genetic variants interact with environmental factors to impact risk of heritable diseases. A notable example of this is a single-nucleotide variant in the Solute Carrier Family 39 Member 8 () gene encoding the missense variant A391T, which is associated with a variety of traits ranging from Parkinson's disease and neuropsychiatric disease to cardiovascular and metabolic diseases and Crohn's disease. The remarkable extent of pleiotropy exhibited by A391T raises key questions regarding how a single coding variant can contribute to this diversity of clinical outcomes and what is the mechanistic basis for this pleiotropy. Here, we generate a murine model for the A391T allele and demonstrate that these mice exhibit Mn deficiency in the colon associated with impaired intestinal barrier function and epithelial glycocalyx disruption. Consequently, A391T mice exhibit increased sensitivity to epithelial injury and pathological inflammation in the colon. Taken together, our results link a genetic variant with a dietary trace element to shed light on a tissue-specific mechanism of disease risk based on impaired intestinal barrier integrity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2014742117DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7682327PMC
November 2020

An expanded analysis framework for multivariate GWAS connects inflammatory biomarkers to functional variants and disease.

Eur J Hum Genet 2021 Feb 27;29(2):309-324. Epub 2020 Oct 27.

Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.

Multivariate methods are known to increase the statistical power to detect associations in the case of shared genetic basis between phenotypes. They have, however, lacked essential analytic tools to follow-up and understand the biology underlying these associations. We developed a novel computational workflow for multivariate GWAS follow-up analyses, including fine-mapping and identification of the subset of traits driving associations (driver traits). Many follow-up tools require univariate regression coefficients which are lacking from multivariate results. Our method overcomes this problem by using Canonical Correlation Analysis to turn each multivariate association into its optimal univariate Linear Combination Phenotype (LCP). This enables an LCP-GWAS, which in turn generates the statistics required for follow-up analyses. We implemented our method on 12 highly correlated inflammatory biomarkers in a Finnish population-based study. Altogether, we identified 11 associations, four of which (F5, ABO, C1orf140 and PDGFRB) were not detected by biomarker-specific analyses. Fine-mapping identified 19 signals within the 11 loci and driver trait analysis determined the traits contributing to the associations. A phenome-wide association study on the 19 representative variants from the signals in 176,899 individuals from the FinnGen study revealed 53 disease associations (p < 1 × 10). Several reported pQTLs in the 11 loci provided orthogonal evidence for the biologically relevant functions of the representative variants. Our novel multivariate analysis workflow provides a powerful addition to standard univariate GWAS analyses by enabling multivariate GWAS follow-up and thus promoting the advancement of powerful multivariate methods in genomics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41431-020-00730-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7868371PMC
February 2021

Comprehensive characterization of amino acid positions in protein structures reveals molecular effect of missense variants.

Proc Natl Acad Sci U S A 2020 11 26;117(45):28201-28211. Epub 2020 Oct 26.

Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142;

Interpretation of the colossal number of genetic variants identified from sequencing applications is one of the major bottlenecks in clinical genetics, with the inference of the effect of amino acid-substituting missense variations on protein structure and function being especially challenging. Here we characterize the three-dimensional (3D) amino acid positions affected in pathogenic and population variants from 1,330 disease-associated genes using over 14,000 experimentally solved human protein structures. By measuring the statistical burden of variations (i.e., point mutations) from all genes on 40 3D protein features, accounting for the structural, chemical, and functional context of the variations' positions, we identify features that are generally associated with pathogenic and population missense variants. We then perform the same amino acid-level analysis individually for 24 protein functional classes, which reveals unique characteristics of the positions of the altered amino acids: We observe up to 46% divergence of the class-specific features from the general characteristics obtained by the analysis on all genes, which is consistent with the structural diversity of essential regions across different protein classes. We demonstrate that the function-specific 3D features of the variants match the readouts of mutagenesis experiments for BRCA1 and PTEN, and positively correlate with an independent set of clinically interpreted pathogenic and benign missense variants. Finally, we make our results available through a web server to foster accessibility and downstream research. Our findings represent a crucial step toward translational genetics, from highlighting the impact of mutations on protein structure to rationalizing the variants' pathogenicity in terms of the perturbed molecular mechanisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2002660117DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7668189PMC
November 2020

Polygenic risk heterogeneity among focal epilepsies.

Epilepsia 2020 11 14;61(11):e179-e185. Epub 2020 Oct 14.

Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.

Focal epilepsy (FE) is clinically highly heterogeneous. It has been shown recently that not only rare but also a subset of common genetic variants confer risk for FE. The relatively modest power of genetic studies in FE suggests a high genetic heterogeneity of FE when grouped as one disorder. We hypothesize that the clinical heterogeneity of FE is correlated with genetic heterogeneity on a common risk variant level. To test the hypothesis, we used an FE polygenic risk score "FE-PRS" that combines small effect sizes of thousands of common variants from the largest FE-GWAS (genome-wide association study) into a single measure. We grouped 414 individuals with FE according to common clinical features into subgroups, either by one feature at a time or by all features combined in a cluster analysis. We examined their association with FE-PRS compared to 20 435 matched population controls and observed heterogeneous FE-PRS burden among the subgroups. The highest phenotypic variance explained by FE-PRS was identified in a cluster analysis-defined FE subgroup where all individuals had unknown etiologies and psychiatric comorbidities, and the majority had early onset seizures. Our results indicate that genetic factors associated with FE have differential burden among FE subtypes. Future studies using better-powered FE-PRS might have clinical utility.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/epi.16717DOI Listing
November 2020

Inherited myeloproliferative neoplasm risk affects haematopoietic stem cells.

Nature 2020 10 14;586(7831):769-775. Epub 2020 Oct 14.

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Myeloproliferative neoplasms (MPNs) are blood cancers that are characterized by the excessive production of mature myeloid cells and arise from the acquisition of somatic driver mutations in haematopoietic stem cells (HSCs). Epidemiological studies indicate a substantial heritable component of MPNs that is among the highest known for cancers. However, only a limited number of genetic risk loci have been identified, and the underlying biological mechanisms that lead to the acquisition of MPNs remain unclear. Here, by conducting a large-scale genome-wide association study (3,797 cases and 1,152,977 controls), we identify 17 MPN risk loci (P < 5.0 × 10), 7 of which have not been previously reported. We find that there is a shared genetic architecture between MPN risk and several haematopoietic traits from distinct lineages; that there is an enrichment for MPN risk variants within accessible chromatin of HSCs; and that increased MPN risk is associated with longer telomere length in leukocytes and other clonal haematopoietic states-collectively suggesting that MPN risk is associated with the function and self-renewal of HSCs. We use gene mapping to identify modulators of HSC biology linked to MPN risk, and show through targeted variant-to-function assays that CHEK2 and GFI1B have roles in altering the function of HSCs to confer disease risk. Overall, our results reveal a previously unappreciated mechanism for inherited MPN risk through the modulation of HSC function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-020-2786-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7606745PMC
October 2020

Neurological disorder-associated genetic variants in individuals with psychogenic nonepileptic seizures.

Sci Rep 2020 09 16;10(1):15205. Epub 2020 Sep 16.

Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.

Psychogenic nonepileptic seizures (PNES) are diagnosed in approximately 30% of patients referred to tertiary care epilepsy centers. Little is known about the molecular pathology of PNES, much less about possible underlying genetic factors. We generated whole-exome sequencing and whole-genome genotyping data to identify rare, pathogenic (P) or likely pathogenic (LP) variants in 102 individuals with PNES and 448 individuals with focal (FE) or generalized (GE) epilepsy. Variants were classified for all individuals based on the ACMG-AMP 2015 guidelines. For research purposes only, we considered genes associated with neurological or psychiatric disorders as candidate genes for PNES. We observe in this first genetic investigation of PNES that six (5.88%) individuals with PNES without coexistent epilepsy carry P/LP variants (deletions at 10q11.22-q11.23, 10q23.1-q23.2, distal 16p11.2, and 17p13.3, and nonsynonymous variants in NSD1 and GABRA5). Notably, the burden of P/LP variants among the individuals with PNES was similar and not significantly different to the burden observed in the individuals with FE (3.05%) or GE (1.82%) (PNES vs. FE vs. GE (3 × 2 χ), P = 0.30; PNES vs. epilepsy (2 × 2 χ), P = 0.14). The presence of variants in genes associated with monogenic forms of neurological and psychiatric disorders in individuals with PNES shows that genetic factors are likely to play a role in PNES or its comorbidities in a subset of individuals. Future large-scale genetic research studies are needed to further corroborate these interesting findings in PNES.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-72101-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7495430PMC
September 2020

Predicting functional effects of missense variants in voltage-gated sodium and calcium channels.

Sci Transl Med 2020 08;12(556)

Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA.

Malfunctions of voltage-gated sodium and calcium channels (encoded by and family genes, respectively) have been associated with severe neurologic, psychiatric, cardiac, and other diseases. Altered channel activity is frequently grouped into gain or loss of ion channel function (GOF or LOF, respectively) that often corresponds not only to clinical disease manifestations but also to differences in drug response. Experimental studies of channel function are therefore important, but laborious and usually focus only on a few variants at a time. On the basis of known gene-disease mechanisms of 19 different diseases, we inferred LOF ( = 518) and GOF ( = 309) likely pathogenic variants from the disease phenotypes of variant carriers. By training a machine learning model on sequence- and structure-based features, we predicted LOF or GOF effects [area under the receiver operating characteristics curve (ROC) = 0.85] of likely pathogenic missense variants. Our LOF versus GOF prediction corresponded to molecular LOF versus GOF effects for 87 functionally tested variants in and (ROC = 0.73) and was validated in exome-wide data from 21,703 cases and 128,957 controls. We showed respective regional clustering of inferred LOF and GOF nucleotide variants across the alignment of the entire gene family, suggesting shared pathomechanisms in the family genes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.aay6848DOI Listing
August 2020