Publications by authors named "Mark Byrum"

2 Publications

  • Page 1 of 1

From the Clinic to the Bench and Back Again in One Dog Year: How a Cross-Species Pipeline to Identify New Treatments for Sarcoma Illuminates the Path Forward in Precision Medicine.

Front Oncol 2020 11;10:117. Epub 2020 Feb 11.

Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, United States.

Cancer drug discovery is an inefficient process, with more than 90% of newly-discovered therapies failing to gain regulatory approval. Patient-derived models of cancer offer a promising new approach to identify new treatments; however, for rare cancers, such as sarcomas, access to patient samples is limited, which precludes development of patient-derived models. To address the limited access to patient samples, we have turned to pet dogs with naturally-occurring sarcomas. Although sarcomas make up <1% of all human cancers, sarcomas represent 15% of cancers in dogs. Because dogs have similar immune systems, an accelerated pace of cancer progression, and a shared environment with humans, studying pet dogs with cancer is ideal for bridging gaps between mouse models and human cancers. Here, we present our cross-species personalized medicine pipeline to identify new therapies for sarcomas. We explore this process through the focused study of a pet dog, Teddy, who presented with six synchronous leiomyosarcomas. Using our pipeline we identified proteasome inhibitors as a potential therapy for Teddy. Teddy was treated with bortezomib and showed a varied response across tumors. Whole exome sequencing revealed substantial genetic heterogeneity across Teddy's recurrent tumors and metastases, suggesting that intra-patient heterogeneity and tumoral adaptation were responsible for the heterogeneous clinical response. Ubiquitin proteomics coupled with exome sequencing revealed multiple candidate driver mutations in proteins related to the proteasome pathway. Together, our results demonstrate how the comparative study of canine sarcomas offers important insights into the development of personalized medicine approaches that can lead to new treatments for sarcomas in both humans and canines.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
February 2020

Overexpression of prostate specific membrane antigen by canine hemangiosarcoma cells provides opportunity for the molecular detection of disease burdens within hemorrhagic body cavity effusions.

PLoS One 2019 2;14(1):e0210297. Epub 2019 Jan 2.

Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL, United States of America.

Background: Canine hemangiosarcoma (cHSA) is a highly metastatic mesenchymal cancer that disseminates by hematogenous and direct implantation routes. Therapies for cHSA are generally ineffective, in part due to advanced clinical disease stage at the time of diagnosis. The validation of conventional molecular methods for detecting novel biomarkers preferentially expressed by cHSA could lead to more timely diagnosis, earlier therapeutic interventions, and improved outcomes. In humans, prostate-specific membrane antigen (PSMA) is a transmembrane protein overexpressed by prostate carcinoma and tumor-associated endothelium of various solid cancer histologies. Importantly, the preferential overexpression of PSMA by certain cancers has been leveraged for the development of diagnostic molecular imaging reagents and targeted therapeutics. Recently, PSMA has been qualitatively demonstrated to be expressed in cHSA cell lines, however, quantitative PSMA expressions and the potential utility of PSMA transcript identification in biologic fluids to support the presence of microscopic cHSA burden has not been reported. Therefore, this study sought to characterize the differential quantitative expressions of PSMA between cHSA and non-malignant tissues, and to determine the potential diagnostic utility of PCR-generated PSMA amplicons as a surrogate of rare cHSA cells dwelling within peritoneal and pericardial cavities.

Methods: Quantitative gene and protein expressions for PSMA were compared between one normal endothelial and six cHSA cell lines by RT-PCR, western blot analysis, and fluorescent microscopy. Additionally, gene and protein expressions of PSMA in normal canine tissues were characterized. Graded expressions of PSMA were determined in spontaneously-arising cHSA tumor samples and the feasibility of qualitative PCR as a molecular diagnostic to detect PSMA transcripts in whole blood from healthy dogs and hemorrhagic effusions from cHSA-bearing dogs were evaluated.

Results: PSMA gene and protein expressions were elevated (up to 6-fold) in cHSA cells compared with non-malignant endothelium. By immunohistochemistry, protein expressions of PSMA were detectable in all cHSA tissue samples evaluated. As predicted by human protein atlas data, PSMA's expression was comparably identified at substantial levels in select normal canine tissues including kidney, liver, and intestine. In young healthy pet dogs, PSMA amplicons could not be identified in circulating whole blood yet were detectable in hemorrhagic effusions collected from pet dogs with confirmed cHSA or PSMA-expressing cancer.

Conclusions: PSMA is quantitatively overexpressed in cHSA compared to normal endothelium, but its protein expression is not restricted to only cHSA tumor tissues, as specific visceral organs also substantively express PSMA. Optimized qualitative PCR methods failed to amplify PSMA amplicons sufficiently for visible detection in circulating whole blood derived from healthy young dogs, yet PSMA transcripts were readily identifiable in hemorrhagic effusions collected from pet dogs with histologically confirmed cHSA or PSMA-expressing cancer. While preliminary, findings derived from a limited cohort of normal and diseased pet dogs provocatively raise the potential value of PSMA amplicon detection as an ancillary molecular diagnostic test for supporting the presence of microscopic cHSA disease burden within hemorrhagic body cavity effusions.
View Article and Find Full Text PDF

Download full-text PDF

October 2019