Publications by authors named "Marjanka K Schmidt"

226 Publications

Breast cancer diagnosed in the post-weaning period is indicative for a poor outcome.

Eur J Cancer 2021 Jul 27;155:13-24. Epub 2021 Jul 27.

Department of Oncology, Laboratory of Gynecological Oncology, KU Leuven, Leuven, Belgium; Department of Gynecology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands; Department of Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium; Department of Gynecological Oncology, Amsterdam University Medical Centers, Amsterdam, the Netherlands. Electronic address:

Background: In young women, a breast cancer diagnosis after childbirth increases the risk for metastasis and death. Studies in rodents suggest that post-weaning mammary gland involution contributes to the poor prognosis of postpartum breast cancers. However, this association has not been investigated in humans, mainly because of missing information on the patient's lactation status at diagnosis.

Patients And Methods: Clinicopathological data of 1180 young women with primary invasive breast cancer, diagnosed within 2 years postpartum (PP-BC), during pregnancy (Pr-BC), or nulliparous (NP-BC), were collected. For PP-BC patients, breastfeeding history was retrieved to differentiate breast cancers identified during lactation (PP-BC) from those diagnosed post-weaning (PP-BC). Differences in prognostic parameters, first site of distant metastasis, and risks for metastasis and death were determined between patient groups.

Results: Cox proportional hazard models pointed to a twofold increased the risk of metastasis and death in PP-BC patients compared with PP-BC (hazard ratio [HR] 2.1 [P = 0.021] and 2.9 [P = 0.004]), Pr-BC (HR 2.1 [P<0.001] and 2.3 [P<0.001]) and NP-BC (HR 2.1 [P<0.001] and 2.0 [P<0.001]) patients. Prognosis was poorest for PP-BC patients who did not breastfeed or only for ≤ 3 months before diagnosis. This could not fully be attributed to differences in standard prognostic characteristics. In addition, PP-BC tumours showed a 3- to 8-fold increased risk to metastasise to the liver, yet this did not correlate with the poor outcome of this patient cohort.

Conclusions: Breast cancer diagnosed shortly after weaning specifically adds to the poor prognosis in women diagnosed with PP-BC. Apart from the importance of an increased awareness, these data show that detailed lactation data need to be registered when breast cancer outcome in young women is investigated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejca.2021.06.009DOI Listing
July 2021

Functional annotation of the 2q35 breast cancer risk locus implicates a structural variant in influencing activity of a long-range enhancer element.

Am J Hum Genet 2021 Jul 18;108(7):1190-1203. Epub 2021 Jun 18.

Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.

A combination of genetic and functional approaches has identified three independent breast cancer risk loci at 2q35. A recent fine-scale mapping analysis to refine these associations resulted in 1 (signal 1), 5 (signal 2), and 42 (signal 3) credible causal variants at these loci. We used publicly available in silico DNase I and ChIP-seq data with in vitro reporter gene and CRISPR assays to annotate signals 2 and 3. We identified putative regulatory elements that enhanced cell-type-specific transcription from the IGFBP5 promoter at both signals (30- to 40-fold increased expression by the putative regulatory element at signal 2, 2- to 3-fold by the putative regulatory element at signal 3). We further identified one of the five credible causal variants at signal 2, a 1.4 kb deletion (esv3594306), as the likely causal variant; the deletion allele of this variant was associated with an average additional increase in IGFBP5 expression of 1.3-fold (MCF-7) and 2.2-fold (T-47D). We propose a model in which the deletion allele of esv3594306 juxtaposes two transcription factor binding regions (annotated by estrogen receptor alpha ChIP-seq peaks) to generate a single extended regulatory element. This regulatory element increases cell-type-specific expression of the tumor suppressor gene IGFBP5 and, thereby, reduces risk of estrogen receptor-positive breast cancer (odds ratio = 0.77, 95% CI 0.74-0.81, p = 3.1 × 10).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.05.013DOI Listing
July 2021

Letter to the editor regarding: 'Association between BRCA mutational status and survival in patients with breast cancer: a systematic review and meta-analysis'.

Breast Cancer Res Treat 2021 Aug 16;188(3):821-823. Epub 2021 Jun 16.

Netherlands Cancer Institute, Amsterdam, The Netherlands.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10549-021-06289-2DOI Listing
August 2021

The predictive ability of the 313 variant-based polygenic risk score for contralateral breast cancer risk prediction in women of European ancestry with a heterozygous BRCA1 or BRCA2 pathogenic variant.

Genet Med 2021 Jun 10. Epub 2021 Jun 10.

Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic.

Purpose: To evaluate the association between a previously published 313 variant-based breast cancer (BC) polygenic risk score (PRS) and contralateral breast cancer (CBC) risk, in BRCA1 and BRCA2 pathogenic variant heterozygotes.

Methods: We included women of European ancestry with a prevalent first primary invasive BC (BRCA1 = 6,591 with 1,402 prevalent CBC cases; BRCA2 = 4,208 with 647 prevalent CBC cases) from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA), a large international retrospective series. Cox regression analysis was performed to assess the association between overall and ER-specific PRS and CBC risk.

Results: For BRCA1 heterozygotes the estrogen receptor (ER)-negative PRS showed the largest association with CBC risk, hazard ratio (HR) per SD = 1.12, 95% confidence interval (CI) (1.06-1.18), C-index = 0.53; for BRCA2 heterozygotes, this was the ER-positive PRS, HR = 1.15, 95% CI (1.07-1.25), C-index = 0.57. Adjusting for family history, age at diagnosis, treatment, or pathological characteristics for the first BC did not change association effect sizes. For women developing first BC < age 40 years, the cumulative PRS 5th and 95th percentile 10-year CBC risks were 22% and 32% for BRCA1 and 13% and 23% for BRCA2 heterozygotes, respectively.

Conclusion: The PRS can be used to refine individual CBC risks for BRCA1/2 heterozygotes of European ancestry, however the PRS needs to be considered in the context of a multifactorial risk model to evaluate whether it might influence clinical decision-making.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-021-01198-7DOI Listing
June 2021

Gene-Environment Interactions Relevant to Estrogen and Risk of Breast Cancer: Can Gene-Environment Interactions Be Detected Only among Candidate SNPs from Genome-Wide Association Studies?

Cancers (Basel) 2021 May 14;13(10). Epub 2021 May 14.

Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark.

In this study we aim to examine gene-environment interactions (GxEs) between genes involved with estrogen metabolism and environmental factors related to estrogen exposure. GxE analyses were conducted with 1970 Korean breast cancer cases and 2052 controls in the case-control study, the Seoul Breast Cancer Study (SEBCS). A total of 11,555 SNPs from the 137 candidate genes were included in the GxE analyses with eight established environmental factors. A replication test was conducted by using an independent population from the Breast Cancer Association Consortium (BCAC), with 62,485 Europeans and 9047 Asians. The GxE tests were performed by using two-step methods in GxEScan software. Two interactions were found in the SEBCS. The first interaction was shown between rs13035764 of NCOA1 and age at menarche in the GE|2df model (-2df = 1.2 × 10). The age at menarche before 14 years old was associated with the high risk of breast cancer, and the risk was higher when subjects had homozygous minor allele G. The second GxE was shown between rs851998 near ESR1 and height in the GE|2df model (-2df = 1.1 × 10). Height taller than 160 cm was associated with a high risk of breast cancer, and the risk increased when the minor allele was added. The findings were not replicated in the BCAC. These results would suggest specificity in Koreans for breast cancer risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers13102370DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156547PMC
May 2021

Evaluation of the association of heterozygous germline variants in NTHL1 with breast cancer predisposition: an international multi-center study of 47,180 subjects.

NPJ Breast Cancer 2021 May 12;7(1):52. Epub 2021 May 12.

School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.

Bi-allelic loss-of-function (LoF) variants in the base excision repair (BER) gene NTHL1 cause a high-risk hereditary multi-tumor syndrome that includes breast cancer, but the contribution of heterozygous variants to hereditary breast cancer is unknown. An analysis of 4985 women with breast cancer, enriched for familial features, and 4786 cancer-free women revealed significant enrichment for NTHL1 LoF variants. Immunohistochemistry confirmed reduced NTHL1 expression in tumors from heterozygous carriers but the NTHL1 bi-allelic loss characteristic mutational signature (SBS 30) was not present. The analysis was extended to 27,421 breast cancer cases and 19,759 controls from 10 international studies revealing 138 cases and 93 controls with a heterozygous LoF variant (OR 1.06, 95% CI: 0.82-1.39) and 316 cases and 179 controls with a missense variant (OR 1.31, 95% CI: 1.09-1.57). Missense variants selected for deleterious features by a number of in silico bioinformatic prediction tools or located within the endonuclease III functional domain showed a stronger association with breast cancer. Somatic sequencing of breast cancers from carriers indicated that the risk associated with NTHL1 appears to operate through haploinsufficiency, consistent with other described low-penetrance breast cancer genes. Data from this very large international multicenter study suggests that heterozygous pathogenic germline coding variants in NTHL1 may be associated with low- to moderate- increased risk of breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41523-021-00255-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115524PMC
May 2021

Impact of the COVID-19 pandemic on diagnosis, stage, and initial treatment of breast cancer in the Netherlands: a population-based study.

J Hematol Oncol 2021 04 17;14(1):64. Epub 2021 Apr 17.

Department of Research and Development, Netherlands Comprehensive Cancer Organisation (IKNL), Godebaldkwartier 419, 3511 DT, Utrecht, The Netherlands.

Background: The onset of the COVID-19 pandemic forced the Dutch national screening program to a halt and increased the burden on health care services, necessitating the introduction of specific breast cancer treatment recommendations from week 12 of 2020. We aimed to investigate the impact of COVID-19 on the diagnosis, stage and initial treatment of breast cancer.

Methods: Women included in the Netherlands Cancer Registry and diagnosed during four periods in weeks 2-17 of 2020 were compared with reference data from 2018/2019 (averaged). Weekly incidence was calculated by age group and tumor stage. The number of women receiving initial treatment within 3 months of diagnosis was calculated by period, initial treatment, age, and stage. Initial treatment, stratified by tumor behavior (ductal carcinoma in situ [DCIS] or invasive), was analyzed by logistic regression and adjusted for age, socioeconomic status, stage, subtype, and region. Factors influencing time to treatment were analyzed by Cox regression.

Results: Incidence declined across all age groups and tumor stages (except stage IV) from 2018/2019 to 2020, particularly for DCIS and stage I disease (p < 0.05). DCIS was less likely to be treated within 3 months (odds ratio [OR]: 2.04, OR: 2.18). Invasive tumors were less likely to be treated initially by mastectomy with immediate reconstruction (OR: 0.52) or by breast conserving surgery (OR: 0.75). Chemotherapy was less likely for tumors diagnosed in the beginning of the study period (OR: 0.59, OR: 0.66), but more likely for those diagnosed at the end (OR: 1.31). Primary hormonal treatment was more common (OR: 1.23, OR: 1.92, OR: 3.01). Only women diagnosed in weeks 2-8 of 2020 experienced treatment delays.

Conclusion: The incidence of breast cancer fell in early 2020, and treatment approaches adapted rapidly. Clarification is needed on how this has affected stage migration and outcomes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13045-021-01073-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8052935PMC
April 2021

Prospective evaluation of a breast-cancer risk model integrating classical risk factors and polygenic risk in 15 cohorts from six countries.

Int J Epidemiol 2021 Mar 23. Epub 2021 Mar 23.

Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.

Background: Rigorous evaluation of the calibration and discrimination of breast-cancer risk-prediction models in prospective cohorts is critical for applications under clinical guidelines. We comprehensively evaluated an integrated model incorporating classical risk factors and a 313-variant polygenic risk score (PRS) to predict breast-cancer risk.

Methods: Fifteen prospective cohorts from six countries with 239 340 women (7646 incident breast-cancer cases) of European ancestry aged 19-75 years were included. Calibration of 5-year risk was assessed by comparing expected and observed proportions of cases overall and within risk categories. Risk stratification for women of European ancestry aged 50-70 years in those countries was evaluated by the proportion of women and future cases crossing clinically relevant risk thresholds.

Results: Among women <50 years old, the median (range) expected-to-observed ratio for the integrated model across 15 cohorts was 0.9 (0.7-1.0) overall and 0.9 (0.7-1.4) at the highest-risk decile; among women ≥50 years old, these were 1.0 (0.7-1.3) and 1.2 (0.7-1.6), respectively. The proportion of women identified above a 3% 5-year risk threshold (used for recommending risk-reducing medications in the USA) ranged from 7.0% in Germany (∼841 000 of 12 million) to 17.7% in the USA (∼5.3 of 30 million). At this threshold, 14.7% of US women were reclassified by adding the PRS to classical risk factors, with identification of 12.2% of additional future cases.

Conclusion: Integrating a 313-variant PRS with classical risk factors can improve the identification of European-ancestry women at elevated risk who could benefit from targeted risk-reducing strategies under current clinical guidelines.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ije/dyab036DOI Listing
March 2021

A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers.

Nat Commun 2021 02 17;12(1):1078. Epub 2021 Feb 17.

Copenhagen General Population Study, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark.

Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-20496-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7890067PMC
February 2021

Breast Cancer Risk Factors and Survival by Tumor Subtype: Pooled Analyses from the Breast Cancer Association Consortium.

Cancer Epidemiol Biomarkers Prev 2021 Apr 26;30(4):623-642. Epub 2021 Jan 26.

Gynaecology Research Unit, Hannover Medical School, Hannover, Germany.

Background: It is not known whether modifiable lifestyle factors that predict survival after invasive breast cancer differ by subtype.

Methods: We analyzed data for 121,435 women diagnosed with breast cancer from 67 studies in the Breast Cancer Association Consortium with 16,890 deaths (8,554 breast cancer specific) over 10 years. Cox regression was used to estimate associations between risk factors and 10-year all-cause mortality and breast cancer-specific mortality overall, by estrogen receptor (ER) status, and by intrinsic-like subtype.

Results: There was no evidence of heterogeneous associations between risk factors and mortality by subtype ( > 0.30). The strongest associations were between all-cause mortality and BMI ≥30 versus 18.5-25 kg/m [HR (95% confidence interval (CI), 1.19 (1.06-1.34)]; current versus never smoking [1.37 (1.27-1.47)], high versus low physical activity [0.43 (0.21-0.86)], age ≥30 years versus <20 years at first pregnancy [0.79 (0.72-0.86)]; >0-<5 years versus ≥10 years since last full-term birth [1.31 (1.11-1.55)]; ever versus never use of oral contraceptives [0.91 (0.87-0.96)]; ever versus never use of menopausal hormone therapy, including current estrogen-progestin therapy [0.61 (0.54-0.69)]. Similar associations with breast cancer mortality were weaker; for example, 1.11 (1.02-1.21) for current versus never smoking.

Conclusions: We confirm associations between modifiable lifestyle factors and 10-year all-cause mortality. There was no strong evidence that associations differed by ER status or intrinsic-like subtype.

Impact: Given the large dataset and lack of evidence that associations between modifiable risk factors and 10-year mortality differed by subtype, these associations could be cautiously used in prognostication models to inform patient-centered care.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1055-9965.EPI-20-0924DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8026532PMC
April 2021

CYP3A7*1C allele: linking premenopausal oestrone and progesterone levels with risk of hormone receptor-positive breast cancers.

Br J Cancer 2021 02 26;124(4):842-854. Epub 2021 Jan 26.

Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), Heidelberg, Germany.

Background: Epidemiological studies provide strong evidence for a role of endogenous sex hormones in the aetiology of breast cancer. The aim of this analysis was to identify genetic variants that are associated with urinary sex-hormone levels and breast cancer risk.

Methods: We carried out a genome-wide association study of urinary oestrone-3-glucuronide and pregnanediol-3-glucuronide levels in 560 premenopausal women, with additional analysis of progesterone levels in 298 premenopausal women. To test for the association with breast cancer risk, we carried out follow-up genotyping in 90,916 cases and 89,893 controls from the Breast Cancer Association Consortium. All women were of European ancestry.

Results: For pregnanediol-3-glucuronide, there were no genome-wide significant associations; for oestrone-3-glucuronide, we identified a single peak mapping to the CYP3A locus, annotated by rs45446698. The minor rs45446698-C allele was associated with lower oestrone-3-glucuronide (-49.2%, 95% CI -56.1% to -41.1%, P = 3.1 × 10); in follow-up analyses, rs45446698-C was also associated with lower progesterone (-26.7%, 95% CI -39.4% to -11.6%, P = 0.001) and reduced risk of oestrogen and progesterone receptor-positive breast cancer (OR = 0.86, 95% CI 0.82-0.91, P = 6.9 × 10).

Conclusions: The CYP3A7*1C allele is associated with reduced risk of hormone receptor-positive breast cancer possibly mediated via an effect on the metabolism of endogenous sex hormones in premenopausal women.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41416-020-01185-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884683PMC
February 2021

Breast Cancer Risk Genes - Association Analysis in More than 113,000 Women.

N Engl J Med 2021 02 20;384(5):428-439. Epub 2021 Jan 20.

The authors' affiliations are as follows: the Centre for Cancer Genetic Epidemiology, Departments of Public Health and Primary Care (L.D., S. Carvalho, J.A., K.A.P., Q.W., M.K.B., J.D., B.D., N. Mavaddat, K. Michailidou, A.C.A., P.D.P.P., D.F.E.) and Oncology (C.L., P.A.H., C. Baynes, D.M.C., L.F., V.R., M. Shah, P.D.P.P., A.M.D., D.F.E.), University of Cambridge, Cambridge, the Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine (A. Campbell, D.J.P.), and the Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology (D.J.P.), University of Edinburgh, the Cancer Research UK Edinburgh Centre (D.A.C., J.F.), and the Usher Institute of Population Health Sciences and Informatics, University of Edinburgh Medical School (A. Campbell, J.F.), Edinburgh, the Divisions of Informatics, Imaging, and Data Sciences (E.F.H.), Cancer Sciences (A. Howell), Population Health, Health Services Research, and Primary Care (A. Lophatananon, K. Muir), and Evolution and Genomic Sciences, School of Biological Sciences (W.G.N., E.M.V., D.G.E.), University of Manchester, the NIHR Manchester Biomedical Research Unit (E.F.H.) and the Nightingale Breast Screening Centre, Wythenshawe Hospital (E.F.H., H.I.), Academic Health Science Centre and North West Genomics Laboratory Hub, and the Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust (W.G.N., E.M.V., D.G.E.), Manchester, the School of Cancer and Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, King's College London, London (E.J.S.), the Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham (I.T.), and the Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford (I.T.) - all in the United Kingdom; the Human Genotyping-CEGEN Unit, Human Cancer Genetic Program (A.G.-N., M.R.A., N.Á., B.H., R.N.-T.), and the Human Genetics Group (V.F., A.O., J.B.), Spanish National Cancer Research Center, Centro de Investigación en Red de Enfermedades Raras (A.O., J.B.), Servicio de Oncología Médica, Hospital Universitario La Paz (M.P.Z.), and Molecular Oncology Laboratory, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (M. de la Hoya), Madrid, the Genomic Medicine Group, Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela, Complejo Hospitalario Universitario de Santiago (A. Carracedo, M.G.-D.), and Centro de Investigación en Red de Enfermedades Raras y Centro Nacional de Genotipado, Universidad de Santiago de Compostela (A. Carracedo), Santiago de Compostela, the Oncology and Genetics Unit, Instituto de Investigacion Sanitaria Galicia Sur, Xerencia de Xestion Integrada de Vigo-Servizo Galeo de Saúde, Vigo (J.E.C.), and Servicio de Cirugía General y Especialidades, Hospital Monte Naranco, Oviedo (J.I.A.P.) - all in Spain; the Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund (C. Wahlström, J.V., M.L., T. Törngren, Å.B., A.K.), the Department of Oncology, Örebro University Hospital, Örebro (C. Blomqvist), and the Departments of Medical Epidemiology and Biostatistics (K.C., M.E., M.G., P. Hall, W.H., K.H.), Oncology, Södersjukhuset (P. Hall, S. Margolin), Molecular Medicine and Surgery (A. Lindblom), and Clinical Science and Education, Södersjukhuset (S. Margolin, C. Wendt), Karolinska Institutet, and the Department of Clinical Genetics, Karolinska University Hospital (A. Lindblom), Stockholm - all in Sweden; the Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD (M.T.P., C.F., G.C.-T., A.B.S.), the Cancer Epidemiology Division, Cancer Council Victoria (G.G.G., R.J.M., R.L.M.), the Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health (G.G.G., R.J.M., R.L.M.), and the Department of Clinical Pathology (M.C.S.), University of Melbourne, Anatomical Pathology, Alfred Hospital (C.M.), and the Cancer Epidemiology Division, Cancer Council Victoria (M.C.S.), Melbourne, VIC, and Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC (G.G.G., M.C.S., R.L.M.) - all in Australia; the Division of Molecular Pathology (R.K., S. Cornelissen, M.K.S.), Family Cancer Clinic (F.B.L.H., L.E.K.), Department of Epidemiology (M.A.R.), and Division of Psychosocial Research and Epidemiology (M.K.S.), the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center, Utrecht (M.G.E.M.A.), the Department of Clinical Genetics, Erasmus University Medical Center (J.M.C., A.M.W.O.), and the Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute (B.A.M.H.-G., A. Hollestelle, M.J.H.), Rotterdam, the Department of Clinical Genetics, Maastricht University Medical Center, Maastricht (E.B.G.G.), the Departments of Human Genetics (I.M.M.L., M.P.G.V., P.D.), Clinical Genetics (C.J.A.), and Pathology (P.D.), Leiden University Medical Center, Leiden, the Department of Human Genetics, Radboud University Medical Center, Nijmegen (A.R.M.), and the Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen (J.C.O.) - all in the Netherlands; the Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute (B.D.), and the Division of Cancer Epidemiology and Genetics, National Cancer Institute (T.A., S.J.C., X.R.Y., M.G.-C.), National Institutes of Health, Bethesda, MD; the Department of Pathology, Brigham and Women's Hospital, Harvard Medical School (B.D.), and the Department of Nutrition, Harvard T.H. Chan School of Public Health (R.M.V.D.), Boston; the Departments of Clinical Genetics (K.A.), Oncology (C. Blomqvist), and Obstetrics and Gynecology (H.N., M. Suvanto), Helsinki University Hospital, University of Helsinki, Helsinki, and the Unit of Clinical Oncology, Kuopio University Hospital (P. Auvinen), the Institute of Clinical Medicine, Oncology (P. Auvinen), the Translational Cancer Research Area (J.M.H., V.-M.K., A. Mannermaa), and the Institute of Clinical Medicine, Pathology, and Forensic Medicine (J.M.H., V.-M.K., A. Mannermaa), University of Eastern Finland, and the Biobank of Eastern Finland, Kuopio University Hospital (V.-M.K., A. Mannermaa), Kuopio - both in Finland; the N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus (N.N.A., N.V.B.); the Department of Gynecology and Obstetrics and Institute of Clinical Molecular Biology, University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel (N.A.), the Institute of Medical Biometry and Epidemiology (H. Becher) and Cancer Epidemiology Group (T.M., J.C.-C.), University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, the Department of Gynecology and Obstetrics (M.W.B., P.A.F., L.H.) and Institute of Human Genetics (A.B.E.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg, Erlangen, the Division of Cancer Epidemiology (S.B., A. Jung, P.M.K., J.C.-C.), Molecular Epidemiology Group, C080 (B. Burwinkel, H.S.), Division of Pediatric Neurooncology (A.F.), and Molecular Genetics of Breast Cancer (U.H., M.M., M.U.R., D.T.), German Cancer Research Center, Molecular Biology of Breast Cancer, University Women's Clinic Heidelberg, University of Heidelberg (B. Burwinkel, A.S., H.S.), Hopp Children's Cancer Center (A.F.), Faculty of Medicine, University of Heidelberg (P.M.K.), and National Center for Tumor Diseases, University Hospital and German Cancer Research Center (A.S., C.S.), Heidelberg, the Department of Radiation Oncology (N.V.B., M. Bremer, H.C.) and the Gynecology Research Unit (N.V.B., T.D., P. Hillemanns, T.-W.P.-S., P.S.), Hannover Medical School, Hannover, the Institute of Human Genetics, University of Münster, Münster (N.B.-M.), Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart (H. Brauch, W.-Y.L.), iFIT-Cluster of Excellence, University of Tübingen, and the German Cancer Consortium, German Cancer Research Center, Partner Site Tübingen (H. Brauch), and the University of Tübingen (W.-Y.L.), Tübingen, Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum, Bochum (T.B.), Institute for Medical Informatics, Statistics, and Epidemiology, University of Leipzig, Leipzig (C.E.), Center for Hereditary Breast and Ovarian Cancer (E.H., R.K.S.) and Center for Integrated Oncology (E.H., R.K.S.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, the Department of Internal Medicine, Evangelische Kliniken Bonn, Johanniter Krankenhaus, Bonn (Y.-D.K.), the Department of Gynecology and Obstetrics, University of Munich, Campus Großhadern, Munich (A. Meindl), and the Institute of Pathology, Städtisches Klinikum Karlsruhe, Karlsruhe (T.R.) - all in Germany; the Gynecological Cancer Registry, Centre Georges-François Leclerc, Dijon (P. Arveux), and the Center for Research in Epidemiology and Population Health, Team Exposome and Heredity, INSERM, University Paris-Saclay, Villejuif (E.C.-D., P.G., T. Truong) - both in France; the Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences (M. Bermisheva, E.K.), the Department of Genetics and Fundamental Medicine, Bashkir State University (E.K., D.P., Y.V.), and the Ufa Research Institute of Occupational Health and Human Ecology (Y.V.), Ufa, Russia; the Department of Genetics and Pathology (K.B., A. Jakubowska, J. Lubiński, K.P.) and the Independent Laboratory of Molecular Biology and Genetic Diagnostics (A. Jakubowska), Pomeranian Medical University, Szczecin, Poland; the Copenhagen General Population Study, the Department of Clinical Biochemistry (S.E.B., B.G.N.), and the Department of Breast Surgery (H.F.), Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, and the Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen (S.E.B., B.G.N.) - both in Denmark; the Division of Cancer Prevention and Genetics, European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) (B. Bonanni), the Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano (S. Manoukian), the Genome Diagnostics Program, FIRC Institute of Molecular Oncology (P.P.), and the Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (P.R.), Milan; the Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet (A.-L.B.-D., G.I.G.A., V.N.K.), and the Institute of Clinical Medicine, Faculty of Medicine, University of Oslo (A.-L.B.-D., V.N.K.), Oslo; Medical Faculty, Universidad de La Sabana (I.B.), and the Clinical Epidemiology and Biostatistics Department (F.G.) and Institute of Human Genetics (D.T.), Pontificia Universidad Javeriana, Bogota, Colombia; the Department of Internal Medicine and Huntsman Cancer Institute, University of Utah (N.J.C., M.J.M., J.A.W.), and the Intermountain Healthcare Biorepository and Department of Pathology, Intermountain Healthcare (M.H.C.), Salt Lake City; the David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California, Los Angeles (P.A.F.), and Moores Cancer Center (M.G.-D., M.E.M.) and the Department of Family Medicine and Public Health (M.E.M.), University of California San Diego, La Jolla; the Departments of Medical Oncology (V.G., D.M.) and Pathology (M.T.), University Hospital of Heraklion, Heraklion, and the Department of Oncology, University Hospital of Larissa, Larissa (E.S.) - both in Greece; the Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital (G.G., I.L.A.), the Departments of Laboratory Medicine and Pathobiology (A.M.M.) and Molecular Genetics (I.L.A.), University of Toronto, and the Laboratory Medicine Program, University Health Network (A.M.M.), Toronto, and the Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Québec City, QC (J.S.) - both in Canada; the Department of Electron Microscopy and Molecular Pathology (A. Hadjisavvas, K.K., M.A.L.), the Cyprus School of Molecular Medicine (A. Hadjisavvas, K.K., M.A.L., K. Michailidou), and the Biostatistics Unit (K. Michailidou), Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; the Saw Swee Hock School of Public Health (M. Hartman, R.M.V.D.) and the Department of Medicine, Yong Loo Lin School of Medicine (R.M.V.D.), National University of Singapore, the Department of Surgery, National University Health System (M. Hartman, J. Li), and the Human Genetics Division, Genome Institute of Singapore (J. Li), Singapore; the Department of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia (W.K.H.), and the Breast Cancer Research Programme, Cancer Research Malaysia (W.K.H., P.S.N., S.-Y.Y., S.H.T.), Selangor, and the Breast Cancer Research Unit, Cancer Research Institute (N.A.M.T.), and the Department of Surgery, Faculty of Medicine (N.A.M.T., P.S.N., S.H.T.), University Malaya, Kuala Lumpur - both in Malaysia; Surgery, School of Medicine, National University of Ireland, Galway (M.J.K., N. Miller); the Department of Surgery, Daerim Saint Mary's Hospital (S.-W.K.), the Department of Surgery, Ulsan University College of Medicine and Asan Medical Center (J.W.L.), the Department of Surgery, Soonchunhyang University College of Medicine and Soonchunhyang University Hospital (M.H.L.), Integrated Major in Innovative Medical Science, Seoul National University College of Medicine (S.K.P.), and the Cancer Research Institute, Seoul National University (S.K.P.), Seoul, South Korea; the Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Center, Lahore, Pakistan (M.U.R.); and the National Cancer Institute, Ministry of Public Health, Nonthaburi, Thailand (S.T.).

Background: Genetic testing for breast cancer susceptibility is widely used, but for many genes, evidence of an association with breast cancer is weak, underlying risk estimates are imprecise, and reliable subtype-specific risk estimates are lacking.

Methods: We used a panel of 34 putative susceptibility genes to perform sequencing on samples from 60,466 women with breast cancer and 53,461 controls. In separate analyses for protein-truncating variants and rare missense variants in these genes, we estimated odds ratios for breast cancer overall and tumor subtypes. We evaluated missense-variant associations according to domain and classification of pathogenicity.

Results: Protein-truncating variants in 5 genes (, , , , and ) were associated with a risk of breast cancer overall with a P value of less than 0.0001. Protein-truncating variants in 4 other genes (, , , and ) were associated with a risk of breast cancer overall with a P value of less than 0.05 and a Bayesian false-discovery probability of less than 0.05. For protein-truncating variants in 19 of the remaining 25 genes, the upper limit of the 95% confidence interval of the odds ratio for breast cancer overall was less than 2.0. For protein-truncating variants in and , odds ratios were higher for estrogen receptor (ER)-positive disease than for ER-negative disease; for protein-truncating variants in , , , , , and , odds ratios were higher for ER-negative disease than for ER-positive disease. Rare missense variants (in aggregate) in , , and were associated with a risk of breast cancer overall with a P value of less than 0.001. For , , and , missense variants (in aggregate) that would be classified as pathogenic according to standard criteria were associated with a risk of breast cancer overall, with the risk being similar to that of protein-truncating variants.

Conclusions: The results of this study define the genes that are most clinically useful for inclusion on panels for the prediction of breast cancer risk, as well as provide estimates of the risks associated with protein-truncating variants, to guide genetic counseling. (Funded by European Union Horizon 2020 programs and others.).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJMoa1913948DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7611105PMC
February 2021

Performance of Breast Cancer Polygenic Risk Scores in 760 Female CHEK2 Germline Mutation Carriers.

J Natl Cancer Inst 2021 Jul;113(7):893-899

Division of Psychiatry, University College London, London, UK.

Background: Genome-wide association studies suggest that the combined effects of breast cancer (BC)-associated single nucleotide polymorphisms (SNPs) can improve BC risk stratification using polygenic risk scores (PRSs). The performance of PRSs in genome-wide association studies-independent clinical cohorts is poorly studied in individuals carrying mutations in moderately penetrant BC predisposition genes such as CHEK2.

Methods: A total of 760 female CHEK2 mutation carriers were included; 561 women were affected with BC, of whom 74 developed metachronous contralateral BC (mCBC). For PRS calculations, 2 SNP sets covering 77 (SNP set 1, developed for BC risk stratification in women unselected for their BRCA1/2 germline mutation status) and 88 (SNP set 2, developed for BC risk stratification in female BRCA1/2 mutation carriers) BC-associated SNPs were used. All statistical tests were 2-sided.

Results: Both SNP sets provided concordant PRS results at the individual level (r = 0.91, P < 2.20 × 10-16). Weighted cohort Cox regression analyses revealed statistically significant associations of PRSs with the risk for first BC. For SNP set 1, a hazard ratio of 1.71 per SD of the PRS was observed (95% confidence interval = 1.36 to 2.15, P = 3.87 × 10-6). PRSs identify a subgroup of CHEK2 mutation carriers with a predicted lifetime risk for first BC that exceeds the surveillance thresholds defined by international guidelines. Association of PRS with mCBC was examined via Cox regression analysis (SNP set 1 hazard ratio = 1.23, 95% confidence interval = 0.86 to 1.78, P = .26).

Conclusions: PRSs may be used to personalize risk-adapted preventive measures for women with CHEK2 mutations. Larger studies are required to assess the role of PRSs in mCBC predisposition.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/djaa203DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8246885PMC
July 2021

Contralateral breast cancer risk in patients with ductal carcinoma in situ and invasive breast cancer.

NPJ Breast Cancer 2020 Nov 3;6(1):60. Epub 2020 Nov 3.

Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.

We aimed to assess contralateral breast cancer (CBC) risk in patients with ductal carcinoma in situ (DCIS) compared with invasive breast cancer (BC). Women diagnosed with DCIS (N = 28,003) or stage I-III BC (N = 275,836) between 1989 and 2017 were identified from the nationwide Netherlands Cancer Registry. Cumulative incidences were estimated, accounting for competing risks, and hazard ratios (HRs) for metachronous invasive CBC. To evaluate effects of adjuvant systemic therapy and screening, separate analyses were performed for stage I BC without adjuvant systemic therapy and by mode of first BC detection. Multivariable models including clinico-pathological and treatment data were created to assess CBC risk prediction performance in DCIS patients. The 10-year cumulative incidence of invasive CBC was 4.8% for DCIS patients (CBC = 1334). Invasive CBC risk was higher in DCIS patients compared with invasive BC overall (HR = 1.10, 95% confidence interval (CI) = 1.04-1.17), and lower compared with stage I BC without adjuvant systemic therapy (HR = 0.87; 95% CI = 0.82-0.92). In patients diagnosed ≥2011, the HR for invasive CBC was 1.38 (95% CI = 1.35-1.68) after screen-detected DCIS compared with screen-detected invasive BC, and was 2.14 (95% CI = 1.46-3.13) when not screen-detected. The C-index was 0.52 (95% CI = 0.50-0.54) for invasive CBC prediction in DCIS patients. In conclusion, CBC risks are low overall. DCIS patients had a slightly higher risk of invasive CBC compared with invasive BC, likely explained by the risk-reducing effect of (neo)adjuvant systemic therapy among BC patients. For support of clinical decision making more information is needed to differentiate CBC risks among DCIS patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41523-020-00202-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7609533PMC
November 2020

Comprehensive trends in incidence, treatment, survival and mortality of first primary invasive breast cancer stratified by age, stage and receptor subtype in the Netherlands between 1989 and 2017.

Int J Cancer 2021 May 16;148(9):2289-2303. Epub 2020 Dec 16.

Department of Research and Development, Netherlands Comprehensive Cancer Organisation, Utrecht.

Our study aimed to provide a comprehensive overview of trends in incidence, survival, mortality and treatment of first primary invasive breast cancer (BC), according to age, stage and receptor subtype in the Netherlands between 1989 and 2017. Data from all women diagnosed with first primary stage I to IV BC (N = 320 249) were obtained from the Netherlands Cancer Registry. BC mortality and general population data were retrieved from Statistics Netherlands. Age-standardised incidence and mortality rates were calculated with annual percentage change (APC) and average annual percentage change (AAPC) statistics. The relative survival (RS) was used as estimator for disease-specific survival. The BC incidence for all BC patients combined significantly increased until 2013 from 126 to 158 per 100 000 person-years, after which a declining trend was observed. Surgery became less extensive, but (neo-)adjuvant systemic treatments and their combinations were given more frequently. The RS improved for all age groups and for most stages and receptor subtypes, but remained stable for all subtypes since 2012 to 2013 and since 2000 to 2009 for Stage IV BC at 15 years of follow-up. Overall, the 5- and 10-year RS increased from 76.8% (95% confidence interval [CI]: 76.1, 77.4) and 55.9% (95% CI: 54.7, 57.1) in 1989 to 1999 to 91.0% (95% CI: 90.5, 91.5) and 82.9% (95% CI: 82.2, 83.5), respectively, in 2010 to 2016. BC mortality improved regardless of age and overall decreased from 57 to 35 per 100 000 person-years between 1989 and 2017. In conclusion, the BC incidence in the Netherlands has steadily increased since 1989, but the latest trends show promising declines. Survival improved markedly for most patients and the mortality decreased regardless of age.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.33417DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8048677PMC
May 2021

Risk of breast cancer in women after a salivary gland carcinoma or pleomorphic adenoma in the Netherlands.

Cancer Med 2021 01 28;10(1):424-434. Epub 2020 Nov 28.

Department of Head and Neck Oncology and Surgery, Netherlands Cancer Institute/Antoni van Leeuwenhoek, Amsterdam, The Netherlands.

Salivary and mammary gland tumors show morphological similarities and share various characteristics, including frequent overexpression of hormone receptors and female preponderance. Although this may suggest a common etiology, it remains unclear whether patients with a salivary gland tumor carry an increased risk of breast cancer (BC). Our purpose was to determine the risk of BC in women diagnosed with salivary gland carcinoma (SGC) or pleomorphic adenoma (SGPA). BC incidence (invasive and in situ) was assessed in two nationwide cohorts: one comprising 1567 women diagnosed with SGC and one with 2083 women with SGPA. BC incidence was compared with general population rates using standardized incidence ratio (SIR). BC risk was assessed according to age at SGC/SGPA diagnosis, follow-up time and (for SGC patients) histological subtype. The mean follow-up was 7.0 years after SGC and 9.9 after SGPA diagnosis. During follow-up, 52 patients with SGC and 74 patients with SGPA developed BC. The median time to BC was 6 years after SGC and 7 after SGPA. The cumulative risk at 10 years of follow-up was 3.1% after SGC and 3.5% after SGPA (95% Confidence Interval (95%CI) 2.1%-4.7% and 2.6%-4.6%, respectively). BC incidence was 1.59 times (95%CI 1.19-2.09) higher in the SGC-cohort than expected based on incidence rates in the general population. SGPA-patients showed a 1.48 times (95%CI 1.16-1.86) higher incidence. Women with SGC or SGPA have a slightly increased risk of BC. The magnitude of risk justifies raising awareness, but is no reason for BC screening.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cam4.3598DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826476PMC
January 2021

Breast cancer risk factors and their effects on survival: a Mendelian randomisation study.

BMC Med 2020 11 17;18(1):327. Epub 2020 Nov 17.

Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.

Background: Observational studies have investigated the association of risk factors with breast cancer prognosis. However, the results have been conflicting and it has been challenging to establish causality due to potential residual confounding. Using a Mendelian randomisation (MR) approach, we aimed to examine the potential causal association between breast cancer-specific survival and nine established risk factors for breast cancer: alcohol consumption, body mass index, height, physical activity, mammographic density, age at menarche or menopause, smoking, and type 2 diabetes mellitus (T2DM).

Methods: We conducted a two-sample MR analysis on data from the Breast Cancer Association Consortium (BCAC) and risk factor summary estimates from the GWAS Catalog. The BCAC data included 86,627 female patients of European ancestry with 7054 breast cancer-specific deaths during 15 years of follow-up. Of these, 59,378 were estrogen receptor (ER)-positive and 13,692 were ER-negative breast cancer patients. For the significant association, we used sensitivity analyses and a multivariable MR model. All risk factor associations were also examined in a model adjusted by other prognostic factors.

Results: Increased genetic liability to T2DM was significantly associated with worse breast cancer-specific survival (hazard ratio [HR] = 1.10, 95% confidence interval [CI] = 1.03-1.17, P value [P] = 0.003). There were no significant associations after multiple testing correction for any of the risk factors in the ER-status subtypes. For the reported significant association with T2DM, the sensitivity analyses did not show evidence for violation of the MR assumptions nor that the association was due to increased BMI. The association remained significant when adjusting by other prognostic factors.

Conclusions: This extensive MR analysis suggests that T2DM may be causally associated with worse breast cancer-specific survival and therefore that treating T2DM may improve prognosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12916-020-01797-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7670589PMC
November 2020

Breast Cancer Polygenic Risk Score and Contralateral Breast Cancer Risk.

Am J Hum Genet 2020 11 5;107(5):837-848. Epub 2020 Oct 5.

Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong; Hong Kong Sanatorium and Hospital, Department of Pathology, Happy Valley, Hong Kong.

Previous research has shown that polygenic risk scores (PRSs) can be used to stratify women according to their risk of developing primary invasive breast cancer. This study aimed to evaluate the association between a recently validated PRS of 313 germline variants (PRS) and contralateral breast cancer (CBC) risk. We included 56,068 women of European ancestry diagnosed with first invasive breast cancer from 1990 onward with follow-up from the Breast Cancer Association Consortium. Metachronous CBC risk (N = 1,027) according to the distribution of PRS was quantified using Cox regression analyses. We assessed PRS interaction with age at first diagnosis, family history, morphology, ER status, PR status, and HER2 status, and (neo)adjuvant therapy. In studies of Asian women, with limited follow-up, CBC risk associated with PRS was assessed using logistic regression for 340 women with CBC compared with 12,133 women with unilateral breast cancer. Higher PRS was associated with increased CBC risk: hazard ratio per standard deviation (SD) = 1.25 (95%CI = 1.18-1.33) for Europeans, and an OR per SD = 1.15 (95%CI = 1.02-1.29) for Asians. The absolute lifetime risks of CBC, accounting for death as competing risk, were 12.4% for European women at the 10 percentile and 20.5% at the 90 percentile of PRS. We found no evidence of confounding by or interaction with individual characteristics, characteristics of the primary tumor, or treatment. The C-index for the PRS alone was 0.563 (95%CI = 0.547-0.586). In conclusion, PRS is an independent factor associated with CBC risk and can be incorporated into CBC risk prediction models to help improve stratification and optimize surveillance and treatment strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2020.09.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7675034PMC
November 2020

Association of germline variation with the survival of women with pathogenic variants and breast cancer.

NPJ Breast Cancer 2020 10;6:44. Epub 2020 Sep 10.

Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON Canada.

Germline genetic variation has been suggested to influence the survival of breast cancer patients independently of tumor pathology. We have studied survival associations of genetic variants in two etiologically unique groups of breast cancer patients, the carriers of germline pathogenic variants in or genes. We found that rs57025206 was significantly associated with the overall survival, predicting higher mortality of carrier patients with estrogen receptor-negative breast cancer, with a hazard ratio 4.37 (95% confidence interval 3.03-6.30,  = 3.1 × 10). Multivariable analysis adjusted for tumor characteristics suggested that rs57025206 was an independent survival marker. In addition, our exploratory analyses suggest that the associations between genetic variants and breast cancer patient survival may depend on tumor biological subgroup and clinical patient characteristics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41523-020-00185-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7483417PMC
September 2020

Validation of the BOADICEA model and a 313-variant polygenic risk score for breast cancer risk prediction in a Dutch prospective cohort.

Genet Med 2020 11 6;22(11):1803-1811. Epub 2020 Jul 6.

Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.

Purpose: We evaluated the performance of the recently extended Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA version 5) in a Dutch prospective cohort, using a polygenic risk score (PRS) based on 313 breast cancer (BC)-associated variants (PRS) and other, nongenetic risk factors.

Methods: Since 1989, 6522 women without BC aged 45 or older of European descent have been included in the Rotterdam Study. The PRS was calculated per 1 SD in controls from the Breast Cancer Association Consortium (BCAC). Cox regression analysis was performed to estimate the association between the PRS and incident BC risk. Cumulative 10-year risks were calculated with BOADICEA including different sets of variables (age, risk factors and PRS). C-statistics were used to evaluate discriminative ability.

Results: In total, 320 women developed BC. The PRS was significantly associated with BC (hazard ratio [HR] per SD of 1.56, 95% confidence interval [CI] [1.40-1.73]). Using 10-year risk estimates including age and the PRS, other risk factors improved the discriminatory ability of the BOADICEA model marginally, from a C-statistic of 0.636 to 0.653.

Conclusions: The effect size of the PRS is highly reproducible in the Dutch population. Our results validate the BOADICEA v5 model for BC risk assessment in the Dutch general population.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-020-0884-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7605432PMC
November 2020

Assessment of polygenic architecture and risk prediction based on common variants across fourteen cancers.

Nat Commun 2020 07 3;11(1):3353. Epub 2020 Jul 3.

Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK.

Genome-wide association studies (GWAS) have led to the identification of hundreds of susceptibility loci across cancers, but the impact of further studies remains uncertain. Here we analyse summary-level data from GWAS of European ancestry across fourteen cancer sites to estimate the number of common susceptibility variants (polygenicity) and underlying effect-size distribution. All cancers show a high degree of polygenicity, involving at a minimum of thousands of loci. We project that sample sizes required to explain 80% of GWAS heritability vary from 60,000 cases for testicular to over 1,000,000 cases for lung cancer. The maximum relative risk achievable for subjects at the 99th risk percentile of underlying polygenic risk scores (PRS), compared to average risk, ranges from 12 for testicular to 2.5 for ovarian cancer. We show that PRS have potential for risk stratification for cancers of breast, colon and prostate, but less so for others because of modest heritability and lower incidence.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-16483-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335068PMC
July 2020

Personalized early detection and prevention of breast cancer: ENVISION consensus statement.

Nat Rev Clin Oncol 2020 11 18;17(11):687-705. Epub 2020 Jun 18.

Department of Public Health, Erasmus MC, Rotterdam, Netherlands.

The European Collaborative on Personalized Early Detection and Prevention of Breast Cancer (ENVISION) brings together several international research consortia working on different aspects of the personalized early detection and prevention of breast cancer. In a consensus conference held in 2019, the members of this network identified research areas requiring development to enable evidence-based personalized interventions that might improve the benefits and reduce the harms of existing breast cancer screening and prevention programmes. The priority areas identified were: 1) breast cancer subtype-specific risk assessment tools applicable to women of all ancestries; 2) intermediate surrogate markers of response to preventive measures; 3) novel non-surgical preventive measures to reduce the incidence of breast cancer of poor prognosis; and 4) hybrid effectiveness-implementation research combined with modelling studies to evaluate the long-term population outcomes of risk-based early detection strategies. The implementation of such programmes would require health-care systems to be open to learning and adapting, the engagement of a diverse range of stakeholders and tailoring to societal norms and values, while also addressing the ethical and legal issues. In this Consensus Statement, we discuss the current state of breast cancer risk prediction, risk-stratified prevention and early detection strategies, and their implementation. Throughout, we highlight priorities for advancing each of these areas.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41571-020-0388-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567644PMC
November 2020

Germline HOXB13 mutations p.G84E and p.R217C do not confer an increased breast cancer risk.

Sci Rep 2020 06 16;10(1):9688. Epub 2020 Jun 16.

Department of Gynecology and Obstetrics, University of Tübingen, Tübingen, Germany.

In breast cancer, high levels of homeobox protein Hox-B13 (HOXB13) have been associated with disease progression of ER-positive breast cancer patients and resistance to tamoxifen treatment. Since HOXB13 p.G84E is a prostate cancer risk allele, we evaluated the association between HOXB13 germline mutations and breast cancer risk in a previous study consisting of 3,270 familial non-BRCA1/2 breast cancer cases and 2,327 controls from the Netherlands. Although both recurrent HOXB13 mutations p.G84E and p.R217C were not associated with breast cancer risk, the risk estimation for p.R217C was not very precise. To provide more conclusive evidence regarding the role of HOXB13 in breast cancer susceptibility, we here evaluated the association between HOXB13 mutations and increased breast cancer risk within 81 studies of the international Breast Cancer Association Consortium containing 68,521 invasive breast cancer patients and 54,865 controls. Both HOXB13 p.G84E and p.R217C did not associate with the development of breast cancer in European women, neither in the overall analysis (OR = 1.035, 95% CI = 0.859-1.246, P = 0.718 and OR = 0.798, 95% CI = 0.482-1.322, P = 0.381 respectively), nor in specific high-risk subgroups or breast cancer subtypes. Thus, although involved in breast cancer progression, HOXB13 is not a material breast cancer susceptibility gene.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-65665-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297796PMC
June 2020

The impact of menstruation persistence or recovery after chemotherapy on survival in young patients with hormone receptor negative breast cancer.

Breast 2020 Aug 22;52:102-109. Epub 2020 May 22.

Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.

Introduction: Hormone replacement therapy can diminish hormone depletion-related complaints in postmenopausal women, but is contraindicated for postmenopausal breast cancer (BC) patients. Recovery of menstruation after chemotherapy-induced amenorrhea in young hormone receptor-negative BC patients however, is accepted. To determine the safety of this strategy, we investigated the effect of recovery of menstruation on disease-free survival (DFS) and overall survival (OS) in young hormone receptor-negative BC patients treated with (neo)adjuvant chemotherapy.

Methods: We selected 636 patients from a single-center cohort with early stage hormone receptor-negative BC and under the age of 50 years when treated with chemotherapy. Sufficient data on course of menstruation in medical records was retrospectively found for 397 patients, of whom 299 patients (75%) had a recovery of menstruation after chemotherapy. We used Cox proportional hazards models to estimate hazard ratios (HR) for the effect of recovery of menstruation on DFS and OS.

Results: Patients with recovery of menstruation after chemotherapy less frequently had lymph node involvement at diagnosis (45% vs 66%, p = 0.001). After a median follow-up of 6.7 years, the adjusted hazard ratios were 1.45 (95% CI: 0.83-2.54) for DFS and 1.19 (95% CI: 0.71-1.98) for OS.

Conclusion: No significantly increased recurrence risk was found for hormone receptor-negative BC patients with recovery of menstruation after chemotherapy. However, the outcome of the multivariable model is not reassuring and a potentially increased recurrence risk cannot be excluded. The results need to be validated in a larger prospective study for a more definitive answer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.breast.2020.05.004DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375582PMC
August 2020

Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses.

Nat Genet 2020 06 18;52(6):572-581. Epub 2020 May 18.

Molecular Medicine Unit, Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain.

Breast cancer susceptibility variants frequently show heterogeneity in associations by tumor subtype. To identify novel loci, we performed a genome-wide association study including 133,384 breast cancer cases and 113,789 controls, plus 18,908 BRCA1 mutation carriers (9,414 with breast cancer) of European ancestry, using both standard and novel methodologies that account for underlying tumor heterogeneity by estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 status and tumor grade. We identified 32 novel susceptibility loci (P < 5.0 × 10), 15 of which showed evidence for associations with at least one tumor feature (false discovery rate < 0.05). Five loci showed associations (P < 0.05) in opposite directions between luminal and non-luminal subtypes. In silico analyses showed that these five loci contained cell-specific enhancers that differed between normal luminal and basal mammary cells. The genetic correlations between five intrinsic-like subtypes ranged from 0.35 to 0.80. The proportion of genome-wide chip heritability explained by all known susceptibility loci was 54.2% for luminal A-like disease and 37.6% for triple-negative disease. The odds ratios of polygenic risk scores, which included 330 variants, for the highest 1% of quantiles compared with middle quantiles were 5.63 and 3.02 for luminal A-like and triple-negative disease, respectively. These findings provide an improved understanding of genetic predisposition to breast cancer subtypes and will inform the development of subtype-specific polygenic risk scores.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-020-0609-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7808397PMC
June 2020

Combined Associations of a Polygenic Risk Score and Classical Risk Factors With Breast Cancer Risk.

J Natl Cancer Inst 2021 Mar;113(3):329-337

Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.

We evaluated the joint associations between a new 313-variant PRS (PRS313) and questionnaire-based breast cancer risk factors for women of European ancestry, using 72 284 cases and 80 354 controls from the Breast Cancer Association Consortium. Interactions were evaluated using standard logistic regression and a newly developed case-only method for breast cancer risk overall and by estrogen receptor status. After accounting for multiple testing, we did not find evidence that per-standard deviation PRS313 odds ratio differed across strata defined by individual risk factors. Goodness-of-fit tests did not reject the assumption of a multiplicative model between PRS313 and each risk factor. Variation in projected absolute lifetime risk of breast cancer associated with classical risk factors was greater for women with higher genetic risk (PRS313 and family history) and, on average, 17.5% higher in the highest vs lowest deciles of genetic risk. These findings have implications for risk prevention for women at increased risk of breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/djaa056DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7936056PMC
March 2021

Prediction of contralateral breast cancer: external validation of risk calculators in 20 international cohorts.

Breast Cancer Res Treat 2020 Jun 11;181(2):423-434. Epub 2020 Apr 11.

Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.

Background: Three tools are currently available to predict the risk of contralateral breast cancer (CBC). We aimed to compare the performance of the Manchester formula, CBCrisk, and PredictCBC in patients with invasive breast cancer (BC).

Methods: We analyzed data of 132,756 patients (4682 CBC) from 20 international studies with a median follow-up of 8.8 years. Prediction performance included discrimination, quantified as a time-dependent Area-Under-the-Curve (AUC) at 5 and 10 years after diagnosis of primary BC, and calibration, quantified as the expected-observed (E/O) ratio at 5 and 10 years and the calibration slope.

Results: The AUC at 10 years was: 0.58 (95% confidence intervals [CI] 0.57-0.59) for CBCrisk; 0.60 (95% CI 0.59-0.61) for the Manchester formula; 0.63 (95% CI 0.59-0.66) and 0.59 (95% CI 0.56-0.62) for PredictCBC-1A (for settings where BRCA1/2 mutation status is available) and PredictCBC-1B (for the general population), respectively. The E/O at 10 years: 0.82 (95% CI 0.51-1.32) for CBCrisk; 1.53 (95% CI 0.63-3.73) for the Manchester formula; 1.28 (95% CI 0.63-2.58) for PredictCBC-1A and 1.35 (95% CI 0.65-2.77) for PredictCBC-1B. The calibration slope was 1.26 (95% CI 1.01-1.50) for CBCrisk; 0.90 (95% CI 0.79-1.02) for PredictCBC-1A; 0.81 (95% CI 0.63-0.99) for PredictCBC-1B, and 0.39 (95% CI 0.34-0.43) for the Manchester formula.

Conclusions: Current CBC risk prediction tools provide only moderate discrimination and the Manchester formula was poorly calibrated. Better predictors and re-calibration are needed to improve CBC prediction and to identify low- and high-CBC risk patients for clinical decision-making.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10549-020-05611-8DOI Listing
June 2020
-->