Publications by authors named "Maristella Colombo"

10 Publications

  • Page 1 of 1

Discovery of Entrectinib: A New 3-Aminoindazole As a Potent Anaplastic Lymphoma Kinase (ALK), c-ros Oncogene 1 Kinase (ROS1), and Pan-Tropomyosin Receptor Kinases (Pan-TRKs) inhibitor.

J Med Chem 2016 Apr 30;59(7):3392-408. Epub 2016 Mar 30.

Oncology, Nerviano Medical Sciences Srl , Viale Pasteur 10, 20014 Nerviano, Milan, Italy.

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase responsible for the development of different tumor types. Despite the remarkable clinical activity of crizotinib (Xalkori), the first ALK inhibitor approved in 2011, the emergence of resistance mutations and of brain metastases frequently causes relapse in patients. Within our ALK drug discovery program, we identified compound 1, a novel 3-aminoindazole active on ALK in biochemical and in cellular assays. Its optimization led to compound 2 (entrectinib), a potent orally available ALK inhibitor active on ALK-dependent cell lines, efficiently penetrant the blood-brain barrier (BBB) in different animal species and highly efficacious in in vivo xenograft models. Moreover, entrectinib resulted to be strictly potent on the closely related tyrosine kinases ROS1 and TRKs recently found constitutively activated in several tumor types. Entrectinib is currently undergoing phase I/II clinical trial for the treatment of patients affected by ALK-, ROS1-, and TRK-positive tumors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.6b00064DOI Listing
April 2016

Establish an automated flow injection ESI-MS method for the screening of fragment based libraries: Application to Hsp90.

Eur J Pharm Sci 2015 Aug 4;76:83-94. Epub 2015 May 4.

Oncology Business Unit, Nerviano Medical Sciences, Viale Pasteur 10, 20014 Nerviano (MI), Italy.

ESI-MS is a well established technique for the study of biopolymers (nucleic acids, proteins) and their non covalent adducts, due to its capacity to detect ligand-target complexes in the gas phase and allows inference of ligand-target binding in solution. In this article we used this approach to investigate the interaction of ligands to the Heat Shock Protein 90 (Hsp90). This enzyme is a molecular chaperone involved in the folding and maturation of several proteins which has been subjected in the last years to intensive drug discovery efforts due to its key role in cancer. In particular, reference compounds, with a broad range of dissociation constants from 40pM to 100μM, were tested to assess the reliability of ESI-MS for the study of protein-ligand complexes. A good agreement was found between the values measured with a fluorescence polarization displacement assay and those determined by mass spectrometry. After this validation step we describe the setup of a medium throughput screening method, based on ESI-MS, suitable to explore interactions of therapeutic relevance biopolymers with chemical libraries. Our approach is based on an automated flow injection ESI-MS method (AFI-MS) and has been applied to screen the Nerviano Medical Sciences proprietary fragment library of about 2000 fragments against Hsp90. In order to discard false positive hits and to discriminate those of them interacting with the N-terminal ATP binding site, competition experiments were performed using a reference inhibitor. Gratifyingly, this group of hits matches with the ligands previously identified by NMR FAXS techniques and confirmed by X-ray co-crystallization experiments. These results support the use of AFI-MS for the screening of medium size libraries, including libraries of small molecules with low affinity typically used in fragment based drug discovery. AFI-MS is a valid alternative to other techniques with the additional opportunities to identify compounds interacting with unpredicted or allosteric sites, without the need of any binding probes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2015.05.001DOI Listing
August 2015

Pyrrole-3-carboxamides as potent and selective JAK2 inhibitors.

Bioorg Med Chem 2014 Sep 21;22(17):4998-5012. Epub 2014 Jun 21.

Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy.

We report herein the discovery, structure guided design, synthesis and biological evaluation of a novel class of JAK2 inhibitors. Optimization of the series led to the identification of the potent and orally bioavailable JAK2 inhibitor 28 (NMS-P953). Compound 28 displayed significant tumour growth inhibition in SET-2 xenograft tumour model, with a mechanism of action confirmed in vivo by typical modulation of known biomarkers, and with a favourable pharmacokinetic and safety profile.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2014.06.025DOI Listing
September 2014

Molecular recognition of T:G mismatched base pairs in DNA as studied by electrospray ionization mass spectrometry.

ChemMedChem 2012 Jun 4;7(6):1112-22. Epub 2012 Apr 4.

Oncology Business Unit, Nerviano Medical Sciences, Viale Pasteur 10, 20014 Nerviano (MI), Italy.

Postreplicative mismatch repair (MMR) is a cellular system involved in the recognition and correction of DNA polymerase errors that escape detection in proofreading. Of the various mismatched bases, T:G pairing in DNA is one of the more common mutations leading to the formation of tumors in humans. In addition, the absence of the MMR system can generate resistance to several chemotherapeutic agents, particularly DNA-damaging substances. The main purpose of this study was the setup and validation of an electrospray ionization (ESI) mass spectrometry method for the identification of small molecules that are able to recognize T:G mismatches in DNA targets. These findings could be useful for the discovery of new antitumor drugs. The analytical method is based on the ability of electrospray to preserve the noncovalent adducts present in solution and transfer them to the gas phase. Lexitropsin derivatives (polyimidazole compounds) have been previously described as selective for T:G mismatch binding by NMR and ITC studies. We synthesized and tested various polyimidazole derivatives, one of which in particular (NMS-057) showed a higher affinity for an oligonucleotide DNA sequence containing a T:G mismatched base pair. To rationalize these findings, molecular docking studies were performed using available NMR structures. Moreover, ESI-MS experiments, performed on an orbitrap mass spectrometer, highlighted the formation of heterodimeric complexes between DNA sequences, distamycin A, and polyimidazole compounds. Our results confirm that this ESI method could be a valuable tool for the identification of new molecules able to specifically recognize T:G mismatched base pairs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.201100526DOI Listing
June 2012

4,5-Dihydro-1H-pyrazolo[4,3-h]quinazolines as potent and selective Polo-like kinase 1 (PLK1) inhibitors.

Bioorg Med Chem Lett 2010 Nov 17;20(22):6489-94. Epub 2010 Sep 17.

Nerviano Medical Sciences srl, Business Unit Oncology, Viale Pasteur 10, 20014 Nerviano, Milan, Italy.

A series of 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives was optimized as Polo-like kinase 1 inhibitors. Extensive SAR afforded a highly potent and selective PLK1 compound. The compound showed good antiproliferative activity when tested in a panel of tumor cell lines with PLK1 related mechanism of action and with good in vivo antitumor efficacy in two xenograft models after i.v. administration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2010.09.060DOI Listing
November 2010

Cdc7 kinase inhibitors: 5-heteroaryl-3-carboxamido-2-aryl pyrroles as potential antitumor agents. 1. Lead finding.

J Med Chem 2010 Oct;53(20):7296-315

Nerviano Medical Sciences Srl, Business Unit Oncology, Viale Pasteur 10, 20014 Nerviano, MI, Italy.

Cdc7 serine/threonine kinase is a key regulator of DNA synthesis in eukaryotic organisms. Cdc7 inhibition through siRNA or prototype small molecules causes p53 independent apoptosis in tumor cells while reversibly arresting cell cycle progression in primary fibroblasts. This implies that Cdc7 kinase could be considered a potential target for anticancer therapy. We previously reported that pyrrolopyridinones (e.g., 1) are potent and selective inhibitors of Cdc7 kinase, with good cellular potency and in vitro ADME properties but with suboptimal pharmacokinetic profiles. Here we report on a new chemical class of 5-heteroaryl-3-carboxamido-2-substituted pyrroles (1A) that offers advantages of chemistry diversification and synthetic simplification. This work led to the identification of compound 18, with biochemical data and ADME profile similar to those of compound 1 but characterized by superior efficacy in an in vivo model. Derivative 18 represents a new lead compound worthy of further investigation toward the ultimate goal of identifying a clinical candidate.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm100504dDOI Listing
October 2010

Role of glutathione transferases in the mechanism of brostallicin activation.

Biochemistry 2010 Jan;49(1):226-35

Department of Chemical Sciences and Technologies, University of Tor Vergata, Rome, Italy.

Brostallicin is a novel and unique glutathione transferase-activated pro-drug with promising anticancer activity, currently in phase I and II clinical evaluation. In this work, we show that, in comparison with the parental cell line showing low GST levels, the cytotoxic activity of brostallicin is significantly enhanced in the human breast carcinoma MCF-7 cell line, transfected with either human GST-pi or GST-mu. Moreover, we describe in detail the interaction of brostallicin with GSH in the presence of GSTP1-1 and GSTM2-2, the predominant GST isoenzymes found within tumor cells. The experiments reported here indicate that brostallicin binds reversibly to both isoenzymes with K(d) values in the micromolar range (the affinity being higher for GSTM2-2). Direct evidence that both GSTP1-1 and GSTM2-2 isoenzymes catalyze the Michael addition reaction of GSH to brostallicin has been obtained both by an HPLC-MS technique and by a new fluorometric assay. We also saw the rapid formation of an intermediate reactive species, which is slowly converted into the final products. This intermediate, identified as the alpha-chloroamido derivative of the GSH-brostallicin adduct, is able to alkylate DNA in a sequence-specific manner and appears to be the active form of the drug. The kinetic behavior of the reaction between brostallicin and GSH, catalyzed by GSTP1-1, has been studied in detail, and a minimum kinetic scheme that suitably describes the experimental data is provided. Overall, these data fully support and extend the findings that brostallicin could be indicated for the treatment of tumor overexpressing the pi or mu class GST.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi901689sDOI Listing
January 2010

Identification of N,1,4,4-tetramethyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (PHA-848125), a potent, orally available cyclin dependent kinase inhibitor.

J Med Chem 2009 Aug;52(16):5152-63

Business Unit Oncology, Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy.

The discovery of a novel class of inhibitors of cyclin dependent kinases (CDKs) is described. Starting from compound 1, showing good potency as inhibitor of CDKs but being poorly selective against a panel of serine-threonine and tyrosine kinases, new analogues were synthesized. Enhancement in selectivity, antiproliferative activity against A2780 human ovarian carcinoma cells, and optimization of the physical properties and pharmacokinetic profile led to the identification of highly potent and orally available compounds. Compound 28 (PHA-848125), which in the preclinical xenograft A2780 human ovarian carcinoma model showed good efficacy and was well tolerated upon repeated daily treatments, was identified as a drug candidate for further development. Compound 28 is currently undergoing phase I and phase II clinical trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm9006559DOI Listing
August 2009

A fully automated method for accurate mass determination using high-performance liquid chromatography with a quadrupole/orthogonal acceleration time-of-flight mass spectrometer.

Rapid Commun Mass Spectrom 2004 ;18(4):511-7

Pharmaceutical Sciences, Pharmacia Italia S.p.A., via Pasteur 10, 20014 Nerviano-Milan, Italy.

A generic LC/ESI(+)-oaTOFMS method has been developed for routine automated high accuracy mass determinations of different classes of substances. The system makes use of micro-high-performance liquid chromatography and a hybrid quadrupole/orthogonal acceleration time-of-flight (Q-oaTOF) mass spectrometer. Reproducible and accurate mass measurements were obtained using an electrospray dual sprayer with reserpine as reference compound, introduced into the mass spectrometer alternating with the samples. Experiments were performed to optimize analyte/reference response ratio, statistical algorithm correction setting, and analyte concentration. In these experiments, a clear dependence of the mass measurement error on the analyte/reference response ratio was observed. The dependence of average mass error versus different dead time correction algorithm settings (Np factors) was also explored. In the final automated procedure, verified for a statistically significant set of compounds ( approximately 550) obtained from a medicinal chemistry department, about 70% of the analyzed samples satisfied the acceptance criteria fixed at a maximum error of +/-5 ppm (mass range 150-800 Da).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.1368DOI Listing
May 2004