Publications by authors named "Mariane B Melo"

23 Publications

  • Page 1 of 1

Temporal dynamics of intradermal cytokine response to tuberculin in Mycobacterium bovis BCG-vaccinated cattle using sampling microneedles.

Sci Rep 2021 Mar 29;11(1):7074. Epub 2021 Mar 29.

Department of Animal Sciences, Pennsylvania State University, University Park, PA, USA.

Bovine tuberculosis (bTB) is a disease of livestock with severe and worldwide economic, animal welfare and zoonotic consequences. Application of test-and-slaughter-based control polices reliant on tuberculin skin testing has been the mainstay of bTB control in cattle. However, little is known about the temporal development of the bovine tuberculin skin test response at the dermal sites of antigen injection. To fill this knowledge gap, we applied minimally-invasive sampling microneedles (SMNs) for intradermal sampling of interstitial fluid at the tuberculin skin test sites in Mycobacterium bovis BCG-vaccinated calves and determined the temporal dynamics of a panel of 15 cytokines and chemokines in situ and in the peripheral blood. The results reveal an orchestrated and coordinated cytokine and local chemokine response, identified IL-1RA as a potential soluble biomarker of a positive tuberculin skin response, and confirmed the utility of IFN-γ and IP-10 for bTB detection in blood-based assays. Together, the results highlight the utility of SMNs to identify novel biomarkers and provide mechanistic insights on the intradermal cytokine and chemokine responses associated with the tuberculin skin test in BCG-sensitized cattle.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-021-86398-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8007627PMC
March 2021

IgG-Engineered Protective Antigen for Cytosolic Delivery of Proteins into Cancer Cells.

ACS Cent Sci 2021 Feb 4;7(2):365-378. Epub 2021 Feb 4.

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.

Therapeutic immunotoxins composed of antibodies and bacterial toxins provide potent activity against malignant cells, but joining them with a defined covalent bond while maintaining the desired function is challenging. Here, we develop novel immunotoxins by dovetailing full-length immunoglobulin G (IgG) antibodies and nontoxic anthrax proteins, in which the C terminus of the IgG heavy chain is connected to the side chain of anthrax toxin protective antigen. This strategy enabled efficient conjugation of protective antigen variants to trastuzumab (Tmab) and cetuximab (Cmab) antibodies. The conjugates effectively perform intracellular delivery of edema factor and N terminus of lethal factor (LF) fused with diphtheria toxin and Ras/Rap1-specific endopeptidase. Each conjugate shows high specificity for cells expressing human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR), respectively, and potent activity across six Tmab- and Cmab-resistant cell lines. The conjugates also exhibit increased pharmacokinetics and pronounced in vivo safety, which shows promise for further therapeutic development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acscentsci.0c01670DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7908032PMC
February 2021

Regulatory T cells engineered with TCR signaling-responsive IL-2 nanogels suppress alloimmunity in sites of antigen encounter.

Sci Transl Med 2020 11;12(569)

Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

Adoptive cell transfer of ex vivo expanded regulatory T cells (T) has shown immense potential in animal models of auto- and alloimmunity. However, the effective translation of such T therapies to the clinic has been slow. Because T homeostasis is known to require continuous T cell receptor (TCR) ligation and exogenous interleukin-2 (IL-2), some investigators have explored the use of low-dose IL-2 injections to increase endogenous T responses. Systemic IL-2 immunotherapy, however, can also lead to the activation of cytotoxic T lymphocytes and natural killer cells, causing adverse therapeutic outcomes. Here, we describe a drug delivery platform, which can be engineered to autostimulate T with IL-2 in response to TCR-dependent activation, and thus activate these cells in sites of antigen encounter. To this end, protein nanogels (NGs) were synthesized with cleavable bis(-hydroxysuccinimide) cross-linkers and IL-2/Fc fusion (IL-2) proteins to form particles that release IL-2 under reducing conditions, as found at the surface of T cells receiving stimulation through the TCR. T surface-conjugated with IL-2 NGs were found to have preferential, allograft-protective effects relative to unmodified T or T stimulated with systemic IL-2. We demonstrate that murine and human NG-modified T carrying an IL-2 cargo perform better than conventional T in suppressing alloimmunity in murine and humanized mouse allotransplantation models. In all, the technology presented in this study has the potential to improve T transfer therapy by enabling the regulated spatiotemporal provision of IL-2 to antigen-primed T.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.aaw4744DOI Listing
November 2020

Engineered immunogen binding to alum adjuvant enhances humoral immunity.

Nat Med 2020 03 17;26(3):430-440. Epub 2020 Feb 17.

Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.

Adjuvants are central to the efficacy of subunit vaccines. Aluminum hydroxide (alum) is the most commonly used vaccine adjuvant, yet its adjuvanticity is often weak and mechanisms of triggering antibody responses remain poorly understood. We demonstrate that site-specific modification of immunogens with short peptides composed of repeating phosphoserine (pSer) residues enhances binding to alum and prolongs immunogen bioavailability. The pSer-modified immunogens formulated in alum elicited greatly increased germinal center, antibody, neutralizing antibody, memory and long-lived plasma cell responses compared to conventional alum-adsorbed immunogens. Mechanistically, pSer-immunogen:alum complexes form nanoparticles that traffic to lymph nodes and trigger B cell activation through multivalent and oriented antigen display. Direct uptake of antigen-decorated alum particles by B cells upregulated antigen processing and presentation pathways, further enhancing B cell activation. These data provide insights into mechanisms of action of alum and introduce a readily translatable approach to significantly improve humoral immunity to subunit vaccines using a clinical adjuvant.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41591-020-0753-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7069805PMC
March 2020

Slow Delivery Immunization Enhances HIV Neutralizing Antibody and Germinal Center Responses via Modulation of Immunodominance.

Cell 2019 05 9;177(5):1153-1171.e28. Epub 2019 May 9.

Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA. Electronic address:

Conventional immunization strategies will likely be insufficient for the development of a broadly neutralizing antibody (bnAb) vaccine for HIV or other difficult pathogens because of the immunological hurdles posed, including B cell immunodominance and germinal center (GC) quantity and quality. We found that two independent methods of slow delivery immunization of rhesus monkeys (RMs) resulted in more robust T follicular helper (T) cell responses and GC B cells with improved Env-binding, tracked by longitudinal fine needle aspirates. Improved GCs correlated with the development of >20-fold higher titers of autologous nAbs. Using a new RM genomic immunoglobulin locus reference, we identified differential IgV gene use between immunization modalities. Ab mapping demonstrated targeting of immunodominant non-neutralizing epitopes by conventional bolus-immunized animals, whereas slow delivery-immunized animals targeted a more diverse set of epitopes. Thus, alternative immunization strategies can enhance nAb development by altering GCs and modulating the immunodominance of non-neutralizing epitopes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2019.04.012DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6619430PMC
May 2019

Enhancing Humoral Responses Against HIV Envelope Trimers via Nanoparticle Delivery with Stabilized Synthetic Liposomes.

Sci Rep 2018 11 8;8(1):16527. Epub 2018 Nov 8.

Koch Institute, MIT, Massachusetts, USA.

An HIV vaccine capable of eliciting durable neutralizing antibody responses continues to be an important unmet need. Multivalent nanoparticles displaying a high density of envelope trimers may be promising immunogen forms to elicit strong and durable humoral responses to HIV, but critical particle design criteria remain to be fully defined. To this end, we developed strategies to covalently anchor a stabilized gp140 trimer, BG505 MD39, on the surfaces of synthetic liposomes to study the effects of trimer density and vesicle stability on vaccine-elicited humoral responses in mice. CryoEM imaging revealed homogeneously distributed and oriented MD39 on the surface of liposomes irrespective of particle size, lipid composition, and conjugation strategy. Immunization with covalent MD39-coupled liposomes led to increased germinal center and antigen-specific T follicular helper cell responses and significantly higher avidity serum MD39-specific IgG responses compared to immunization with soluble MD39 trimers. A priming immunization with liposomal-MD39 was important for elicitation of high avidity antibody responses, regardless of whether booster immunizations were administered with either soluble or particulate trimers. The stability of trimer anchoring to liposomes was critical for these effects, as germinal center and output antibody responses were further increased by liposome compositions incorporating sphingomyelin that exhibited high in vitro stability in the presence of serum. Together these data highlight key liposome design features for optimizing humoral immunity to lipid nanoparticle immunogens.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-018-34853-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6224390PMC
November 2018

Enhancement of Peptide Vaccine Immunogenicity by Increasing Lymphatic Drainage and Boosting Serum Stability.

Cancer Immunol Res 2018 09 18;6(9):1025-1038. Epub 2018 Jun 18.

Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts.

Antitumor T-cell responses have the potential to be curative in cancer patients, but the induction of potent T-cell immunity through vaccination remains a largely unmet goal of immunotherapy. We previously reported that the immunogenicity of peptide vaccines could be increased by maximizing delivery to lymph nodes (LNs), where T-cell responses are generated. This was achieved by conjugating the peptide to 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-PEG (DSPE-PEG) to promote albumin binding, which resulted in enhanced lymphatic drainage and improved T-cell responses. Here, we expanded upon these findings and mechanistically dissected the properties that contribute to the potency of this amphiphile-vaccine (amph-vaccine). We found that multiple linkage chemistries could be used to link peptides with DSPE-PEG, and further, that multiple albumin-binding moieties conjugated to peptide antigens enhanced LN accumulation and subsequent T-cell priming. In addition to enhancing lymphatic trafficking, DSPE-PEG conjugation increased the stability of peptides in serum. DSPE-PEG peptides trafficked beyond immediate draining LNs to reach distal nodes, with antigen presented for at least a week , whereas soluble peptide presentation quickly decayed. Responses to amph-vaccines were not altered in mice deficient in the albumin-binding neonatal Fc receptor (FcRn), but required -dependent dendritic cells (DCs). Amph-peptides were processed by human DCs equivalently to unmodified peptides. These data define design criteria for enhancing the immunogenicity of molecular vaccines to guide the design of next-generation peptide vaccines. .
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/2326-6066.CIR-17-0607DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6247902PMC
September 2018

Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination.

Proc Natl Acad Sci U S A 2016 10 4;113(43):E6639-E6648. Epub 2016 Oct 4.

David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, & Harvard, Cambridge, MA 02139; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; Howard Hughes Medical Institute, Chevy Chase, MD 20815

Natural infections expose the immune system to escalating antigen and inflammation over days to weeks, whereas nonlive vaccines are single bolus events. We explored whether the immune system responds optimally to antigen kinetics most similar to replicating infections, rather than a bolus dose. Using HIV antigens, we found that administering a given total dose of antigen and adjuvant over 1-2 wk through repeated injections or osmotic pumps enhanced humoral responses, with exponentially increasing (exp-inc) dosing profiles eliciting >10-fold increases in antibody production relative to bolus vaccination post prime. Computational modeling of the germinal center response suggested that antigen availability as higher-affinity antibodies evolve enhances antigen capture in lymph nodes. Consistent with these predictions, we found that exp-inc dosing led to prolonged antigen retention in lymph nodes and increased Tfh cell and germinal center B-cell numbers. Thus, regulating the antigen and adjuvant kinetics may enable increased vaccine potency.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1606050113DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5086995PMC
October 2016

Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants.

J Clin Invest 2015 Jun 4;125(6):2532-46. Epub 2015 May 4.

Cyclic dinucleotides (CDNs) are agonists of stimulator of IFN genes (STING) and have potential as vaccine adjuvants. However, cyclic di-GMP (cdGMP) injected s.c. shows minimal uptake into lymphatics/draining lymph nodes (dLNs) and instead is rapidly distributed to the bloodstream, leading to systemic inflammation. Here, we encapsulated cdGMP within PEGylated lipid nanoparticles (NP-cdGMP) to redirect this adjuvant to dLNs. Compared with unformulated CDNs, encapsulation blocked systemic dissemination and markedly enhanced dLN accumulation in murine models. Delivery of NP-cdGMP increased CD8+ T cell responses primed by peptide vaccines and enhanced therapeutic antitumor immunity. A combination of a poorly immunogenic liposomal HIV gp41 peptide antigen and NP-cdGMP robustly induced type I IFN in dLNs, induced a greater expansion of vaccine-specific CD4+ T cells, and greatly increased germinal center B cell differentiation in dLNs compared with a combination of liposomal HIV gp41 and soluble CDN. Further, NP-cdGMP promoted durable antibody titers that were substantially higher than those promoted by the well-studied TLR agonist monophosphoryl lipid A and comparable to a much larger dose of unformulated cdGMP, without the systemic toxicity of the latter. These results demonstrate that nanoparticulate delivery safely targets CDNs to the dLNs and enhances the efficacy of this adjuvant. Moreover, this approach can be broadly applied to other small-molecule immunomodulators of interest for vaccines and immunotherapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI79915DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4497758PMC
June 2015

Toxoplasma gondii superinfection and virulence during secondary infection correlate with the exact ROP5/ROP18 allelic combination.

mBio 2015 Feb 24;6(2):e02280. Epub 2015 Feb 24.

Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

Unlabelled: The intracellular parasite Toxoplasma gondii infects a wide variety of vertebrate species globally. Infection in most hosts causes a lifelong chronic infection and generates immunological memory responses that protect the host against new infections. In regions where the organism is endemic, multiple exposures to T. gondii likely occur with great frequency, yet little is known about the interaction between a chronically infected host and the parasite strains from these areas. A widely used model to explore secondary infection entails challenge of chronically infected or vaccinated mice with the highly virulent type I RH strain. Here, we show that although vaccinated or chronically infected C57BL/6 mice are protected against the type I RH strain, they are not protected against challenge with most strains prevalent in South America or another type I strain, GT1. Genetic and genomic analyses implicated the parasite-secreted rhoptry effectors ROP5 and ROP18, which antagonize the host's gamma interferon-induced immunity-regulated GTPases (IRGs), as primary requirements for virulence during secondary infection. ROP5 and ROP18 promoted parasite superinfection in the brains of challenged survivors. We hypothesize that superinfection may be an important mechanism to generate T. gondii strain diversity, simply because two parasite strains would be present in a single meal consumed by the feline definitive host. Superinfection may drive the genetic diversity of Toxoplasma strains in South America, where most isolates are IRG resistant, compared to North America, where most strains are IRG susceptible and are derived from a few clonal lineages. In summary, ROP5 and ROP18 promote Toxoplasma virulence during reinfection.

Importance: Toxoplasma gondii is a widespread parasite of warm-blooded animals and currently infects one-third of the human population. A long-standing assumption in the field is that prior exposure to this parasite protects the host from subsequent reexposure, due to the generation of protective immunological memory. However, this assumption is based on clinical data and mouse models that analyze infections with strains common to Europe infections with strains common to Europe and North America. In contrast, we found that the majority of strains sampled from around the world, in particular those from South America, were able to kill or reinfect the brains of hosts previously exposed to T. gondii. The T. gondii virulence factors ROP5 and ROP18, which inhibit key host effectors that mediate parasite killing, were required for these phenotypes. We speculate that these results underpin clinical observations that pregnant women previously exposed to Toxoplasma can develop congenital infection upon reexposure to South American strains.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/mBio.02280-14DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358003PMC
February 2015

Dual role for inflammasome sensors NLRP1 and NLRP3 in murine resistance to Toxoplasma gondii.

mBio 2014 Feb 18;5(1). Epub 2014 Feb 18.

Unlabelled: Induction of immunity that limits Toxoplasma gondii infection in mice is critically dependent on the activation of the innate immune response. In this study, we investigated the role of cytoplasmic nucleotide-binding domain and leucine-rich repeat containing a pyrin domain (NLRP) inflammasome sensors during acute toxoplasmosis in mice. We show that in vitro Toxoplasma infection of murine bone marrow-derived macrophages activates the NLRP3 inflammasome, resulting in the rapid production and cleavage of interleukin-1β (IL-1β), with no measurable cleavage of IL-18 and no pyroptosis. Paradoxically, Toxoplasma-infected mice produced large quantities of IL-18 but had no measurable IL-1β in their serum. Infection of mice deficient in NLRP3, caspase-1/11, IL-1R, or the inflammasome adaptor protein ASC led to decreased levels of circulating IL-18, increased parasite replication, and death. Interestingly, mice deficient in NLRP1 also displayed increased parasite loads and acute mortality. Using mice deficient in IL-18 and IL-18R, we show that this cytokine plays an important role in limiting parasite replication to promote murine survival. Our findings reveal T. gondii as a novel activator of the NLRP1 and NLRP3 inflammasomes in vivo and establish a role for these sensors in host resistance to toxoplasmosis.

Importance: Inflammasomes are multiprotein complexes that are a major component of the innate immune system. They contain "sensor" proteins that are responsible for detecting various microbial and environmental danger signals and function by activating caspase-1, an enzyme that mediates cleavage and release of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18. Toxoplasma gondii is a highly successful protozoan parasite capable of infecting a wide range of host species that have variable levels of resistance. We report here that T. gondii is a novel activator of the NLRP1 and NLRP3 inflammasomes in vivo and establish a role for these sensors in host resistance to toxoplasmosis. Using mice deficient in IL-18 and IL-18R, we show that the IL-18 cytokine plays a pivotal role by limiting parasite replication to promote murine survival.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/mBio.01117-13DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3944820PMC
February 2014

Transcriptional analysis of murine macrophages infected with different Toxoplasma strains identifies novel regulation of host signaling pathways.

PLoS Pathog 2013 19;9(12):e1003779. Epub 2013 Dec 19.

Massachusetts Institute of Technology, Department of Biology, Cambridge, Massachusetts, United States of America.

Most isolates of Toxoplasma from Europe and North America fall into one of three genetically distinct clonal lineages, the type I, II and III lineages. However, in South America these strains are rarely isolated and instead a great variety of other strains are found. T. gondii strains differ widely in a number of phenotypes in mice, such as virulence, persistence, oral infectivity, migratory capacity, induction of cytokine expression and modulation of host gene expression. The outcome of toxoplasmosis in patients is also variable and we hypothesize that, besides host and environmental factors, the genotype of the parasite strain plays a major role. The molecular basis for these differences in pathogenesis, especially in strains other than the clonal lineages, remains largely unexplored. Macrophages play an essential role in the early immune response against T. gondii and are also the cell type preferentially infected in vivo. To determine if non-canonical Toxoplasma strains have unique interactions with the host cell, we infected murine macrophages with 29 different Toxoplasma strains, representing global diversity, and used RNA-sequencing to determine host and parasite transcriptomes. We identified large differences between strains in the expression level of known parasite effectors and large chromosomal structural variation in some strains. We also identified novel strain-specifically regulated host pathways, including the regulation of the type I interferon response by some atypical strains. IFNβ production by infected cells was associated with parasite killing, independent of interferon gamma activation, and dependent on endosomal Toll-like receptors in macrophages and the cytoplasmic receptor retinoic acid-inducible gene 1 (RIG-I) in fibroblasts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.ppat.1003779DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868521PMC
September 2014

Combined action of nucleic acid-sensing Toll-like receptors and TLR11/TLR12 heterodimers imparts resistance to Toxoplasma gondii in mice.

Cell Host Microbe 2013 Jan 3;13(1):42-53. Epub 2013 Jan 3.

University of Massachusetts Medical School, Worcester, MA 01605, USA.

"Triple-defective" (3d) mice carrying a mutation in UNC93B1, a chaperone for the endosomal nucleic acid-sensing (NAS) Toll-like receptors TLR3, TLR7, and TLR9, are highly susceptible to Toxoplasma gondii infection. However, none of the single or even the triple NAS-TLR-deficient animals recapitulated the 3d susceptible phenotype to experimental toxoplasmosis. Investigating this further, we found that while parasite RNA and DNA activate innate immune responses via TLR7 and TLR9, TLR11 and TLR12 working as heterodimers are required for sensing and responding to Toxoplasma profilin. Consequently, the triple TLR7/TLR9/TLR11-deficient mice are highly susceptible to T. gondii infection, recapitulating the phenotype of 3d mice. Humans lack functional TLR11 and TLR12 genes. Consistently, human cells produce high levels of proinflammatory cytokines in response to parasite-derived RNA and DNA, but not to Toxoplasma profilin, supporting a more critical role for NAS-TLRs in human toxoplasmosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chom.2012.12.003DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552114PMC
January 2013

De novo reconstruction of the Toxoplasma gondii transcriptome improves on the current genome annotation and reveals alternatively spliced transcripts and putative long non-coding RNAs.

BMC Genomics 2012 Dec 12;13:696. Epub 2012 Dec 12.

Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

Background: Accurate gene model predictions and annotation of alternative splicing events are imperative for genomic studies in organisms that contain genes with multiple exons. Currently most gene models for the intracellular parasite, Toxoplasma gondii, are based on computer model predictions without cDNA sequence verification. Additionally, the nature and extent of alternative splicing in Toxoplasma gondii is unknown. In this study, we used de novo transcript assembly and the published type II (ME49) genomic sequence to quantify the extent of alternative splicing in Toxoplasma and to improve the current Toxoplasma gene annotations.

Results: We used high-throughput RNA-sequencing data to assemble full-length transcripts, independently of a reference genome, followed by gene annotation based on the ME49 genome. We assembled 13,533 transcripts overlapping with known ME49 genes in ToxoDB and then used this set to; a) improve the annotation in the untranslated regions of ToxoDB genes, b) identify novel exons within protein-coding ToxoDB genes, and c) report on 50 previously unidentified alternatively spliced transcripts. Additionally, we assembled a set of 2,930 transcripts not overlapping with any known ME49 genes in ToxoDB. From this set, we have identified 118 new ME49 genes, 18 novel Toxoplasma genes, and putative non-coding RNAs.

Conclusion: RNA-seq data and de novo transcript assembly provide a robust way to update incompletely annotated genomes, like the Toxoplasma genome. We have used RNA-seq to improve the annotation of several Toxoplasma genes, identify alternatively spliced genes, novel genes, novel exons, and putative non-coding RNAs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2164-13-696DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3543268PMC
December 2012

Admixture and recombination among Toxoplasma gondii lineages explain global genome diversity.

Proc Natl Acad Sci U S A 2012 Aug 30;109(33):13458-63. Epub 2012 Jul 30.

Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Toxoplasma gondii is a highly successful protozoan parasite that infects all warm-blooded animals and causes severe disease in immunocompromised and immune-naïve humans. It has an unusual global population structure: In North America and Europe, isolated strains fall predominantly into four largely clonal lineages, but in South America there is great genetic diversity and the North American clonal lineages are rarely found. Genetic variation between Toxoplasma strains determines differences in virulence, modulation of host-signaling pathways, growth, dissemination, and disease severity in mice and likely in humans. Most studies on Toxoplasma genetic variation have focused on either a few loci in many strains or low-resolution genome analysis of three clonal lineages. We use whole-genome sequencing to identify a large number of SNPs between 10 Toxoplasma strains from Europe and North and South America. These were used to identify haplotype blocks (genomic regions) shared between strains and construct a Toxoplasma haplotype map. Additional SNP analysis of RNA-sequencing data of 26 Toxoplasma strains, representing global diversity, allowed us to construct a comprehensive genealogy for Toxoplasma gondii that incorporates sexual recombination. These data show that most current isolates are recent recombinants and cannot be easily grouped into a limited number of haplogroups. A complex picture emerges in which some genomic regions have not been recently exchanged between any strains, and others recently spread from one strain to many others.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1117047109DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3421188PMC
August 2012

The rhoptry proteins ROP18 and ROP5 mediate Toxoplasma gondii evasion of the murine, but not the human, interferon-gamma response.

PLoS Pathog 2012 28;8(6):e1002784. Epub 2012 Jun 28.

Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.

The obligate intracellular parasite Toxoplasma gondii secretes effector proteins into the host cell that manipulate the immune response allowing it to establish a chronic infection. Crosses between the types I, II and III strains, which are prevalent in North America and Europe, have identified several secreted effectors that determine strain differences in mouse virulence. The polymorphic rhoptry protein kinase ROP18 was recently shown to determine the difference in virulence between type I and III strains by phosphorylating and inactivating the interferon-γ (IFNγ)-induced immunity-related GTPases (IRGs) that promote killing by disrupting the parasitophorous vacuole membrane (PVM) in murine cells. The polymorphic pseudokinase ROP5 determines strain differences in virulence through an unknown mechanism. Here we report that ROP18 can only inhibit accumulation of the IRGs on the PVM of strains that also express virulent ROP5 alleles. In contrast, specific ROP5 alleles can reduce IRG coating even in the absence of ROP18 expression and can directly interact with one or more IRGs. We further show that the allelic combination of ROP18 and ROP5 also determines IRG evasion and virulence of strains belonging to other lineages besides types I, II and III. However, neither ROP18 nor ROP5 markedly affect survival in IFNγ-activated human cells, which lack the multitude of IRGs present in murine cells. These findings suggest that ROP18 and ROP5 have specifically evolved to block the IRGs and are unlikely to have effects in species that do not have the IRG system, such as humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.ppat.1002784DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3386190PMC
November 2012

Toxoplasma gondii effectors are master regulators of the inflammatory response.

Trends Parasitol 2011 Nov 3;27(11):487-95. Epub 2011 Sep 3.

Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Toxoplasma is a highly successful parasite that establishes a life-long chronic infection. To do this, it must carefully regulate immune activation and host cell effector mechanisms. Here we review the latest developments in our understanding of how Toxoplasma counteracts the immune response of the host, and in some cases provokes it, through the use of specific parasite effector proteins. An emerging theme from these discoveries is that Toxoplasma effectors are master regulators of the pro-inflammatory response, which elicits many of the toxoplasmacidal mechanisms of the host. We speculate that combinations of these effectors present in certain Toxoplasma strains work to maintain an optimal parasite burden in different hosts to ensure parasite transmission.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pt.2011.08.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3200456PMC
November 2011

Requirement of UNC93B1 reveals a critical role for TLR7 in host resistance to primary infection with Trypanosoma cruzi.

J Immunol 2011 Aug 13;187(4):1903-11. Epub 2011 Jul 13.

Division of Infectious Disease and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA.

UNC93B1 associates with TLR3, 7, and 9, mediating their translocation from the endoplasmic reticulum to the endolysosome, thus allowing proper activation by microbial nucleic acids. We found that the triple-deficient 3d mice, which lack functional UNC93B1 as well as functional endosomal TLRs, are highly susceptible to infection with Trypanosoma cruzi. The enhanced parasitemia and mortality in 3d animals were associated with impaired proinflammatory response, including reduced levels of IL-12p40 and IFN-γ. Importantly, the phenotype of 3d mice was intermediary between MyD88(-/-) (highly susceptible) and TLR9(-/-) (moderately susceptible), indicating the involvement of an additional UN93B1-dependent TLR(s) on host resistance to T. cruzi. Hence, our experiments also revealed that TLR7 is a critical innate immune receptor involved in recognition of parasite RNA, induction of IL-12p40 by dendritic cells, and consequent IFN-γ by T lymphocytes. Furthermore, we show that upon T. cruzi infection, triple TLR3/7/9(-/-) mice had similar phenotype than 3d mice. These data imply that the nucleic acid-sensing TLRs are critical determinants of host resistance to primary infection with T. cruzi.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1003911DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150366PMC
August 2011

UNC93B1 mediates host resistance to infection with Toxoplasma gondii.

PLoS Pathog 2010 Aug 26;6(8):e1001071. Epub 2010 Aug 26.

University of Massachusetts Medical School, Worcester, Massachusetts, United States of America.

UNC93B1 associates with Toll-Like Receptor (TLR) 3, TLR7 and TLR9, mediating their translocation from the endoplasmic reticulum to the endolysosome, hence allowing proper activation by nucleic acid ligands. We found that the triple deficient '3d' mice, which lack functional UNC93B1, are hyper-susceptible to infection with Toxoplasma gondii. We established that while mounting a normal systemic pro-inflammatory response, i.e. producing abundant MCP-1, IL-6, TNFα and IFNγ, the 3d mice were unable to control parasite replication. Nevertheless, infection of reciprocal bone marrow chimeras between wild-type and 3d mice with T. gondii demonstrated a primary role of hemopoietic cell lineages in the enhanced susceptibility of UNC93B1 mutant mice. The protective role mediated by UNC93B1 to T. gondii infection was associated with impaired IL-12 responses and delayed IFNγ by spleen cells. Notably, in macrophages infected with T. gondii, UNC93B1 accumulates on the parasitophorous vacuole. Furthermore, upon in vitro infection the rate of tachyzoite replication was enhanced in non-activated macrophages carrying mutant UNC93B1 as compared to wild type gene. Strikingly, the role of UNC93B1 on intracellular parasite growth appears to be independent of TLR function. Altogether, our results reveal a critical role for UNC93B1 on induction of IL-12/IFNγ production as well as autonomous control of Toxoplasma replication by macrophages.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.ppat.1001071DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928809PMC
August 2010

The endless race between Trypanosoma cruzi and host immunity: lessons for and beyond Chagas disease.

Expert Rev Mol Med 2010 Sep 15;12:e29. Epub 2010 Sep 15.

Laboratório de Immunopatologia, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil.

Infection with the protozoan parasite Trypanosoma cruzi, the agent of Chagas disease, is characterised by a variable clinical course - from symptomless cases to severe chronic disease with cardiac and/or gastrointestinal involvement. The variability in disease outcome has been attributed to host responses as well as parasite heterogeneity. In this article, we review studies indicating the importance of immune responses as key determinants of host resistance to T. cruzi infection and the pathogenesis of Chagas disease. Particular attention is given to recent studies defining the role of cognate innate immune receptors and immunodominant CD8+ T cells that recognise parasite components - both crucial for host-parasite interaction and disease outcome. In light of these studies we speculate about parasite strategies that induce a strong and long-lasting T-cell-mediated immunity but at the same time allow persistence of the parasite in the vertebrate host. We also discuss what we have learned from these studies for increasing our understanding of Chagas pathogenesis and for the design of new strategies to prevent the development of Chagas disease. Finally, we highlight recent studies employing a genetically engineered attenuated T. cruzi strain as a vaccine shuttle that elicits potent T cell responses specific to a tumour antigen and protective immunity against a syngeneic melanoma cell line.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1462399410001560DOI Listing
September 2010

Recruitment and endo-lysosomal activation of TLR9 in dendritic cells infected with Trypanosoma cruzi.

J Immunol 2008 Jul;181(2):1333-44

Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

TLR9 is critical in parasite recognition and host resistance to experimental infection with Trypanosoma cruzi. However, no information is available regarding nucleotide sequences and cellular events involved on T. cruzi recognition by TLR9. In silico wide analysis associated with in vitro screening of synthetic oligonucleotides demonstrates that the retrotransposon VIPER elements and mucin-like glycoprotein (TcMUC) genes in the T. cruzi genome are highly enriched for CpG motifs that are immunostimulatory for mouse and human TLR9, respectively. Importantly, infection with T. cruzi triggers high levels of luciferase activity under NF-kappaB-dependent transcription in HEK cells cotransfected with human TLR9, but not in control (cotransfected with human MD2/TLR4) HEK cells. Further, we observed translocation of TLR9 to the lysosomes during invasion/uptake of T. cruzi parasites by dendritic cells. Consistently, potent proinflammatory activity was observed when highly unmethylated T. cruzi genomic DNA was delivered to the endo-lysosomal compartment of host cells expressing TLR9. Thus, together our results indicate that the unmethylated CpG motifs found in the T. cruzi genome are likely to be main parasite targets and probably become available to TLR9 when parasites are destroyed in the lysosome-fused vacuoles during parasite invasion/uptake by phagocytes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.181.2.1333DOI Listing
July 2008