Publications by authors named "Mariana Zuccherato Bocato"

6 Publications

  • Page 1 of 1

A fast-multiclass method for the determination of 21 endocrine disruptors in human urine by using vortex-assisted dispersive liquid-liquid microextraction (VADLLME) and LC-MS/MS.

Environ Res 2020 10 11;189:109883. Epub 2020 Jul 11.

Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903, Ribeirão Preto, SP, Brazil. Electronic address:

Simplicity, speed, and reduced cost are essential demands for routine analysis in human biomonitoring studies. Moreover, the availability of higher volumes of human specimens is becoming more restrictive due to ethical controls and to the costs associated with sample transportation and storage. Thus, analytical methods requiring much lower sample volumes associated with simultaneous detection capability (multiclass analysis) are with a very high claim. In this sense, the present approach aimed at the development of a method for preconcentration and simultaneous determination of four classes of endocrine disruptors (seven bisphenols, seven parabens, five benzophenones, and two antimicrobials) in the urine. The approach is based on vortex-assisted dispersive liquid-liquid microextraction (VADLLME) and high-performance liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). After optimization of the significant parameters of VADLLME extraction, the proposed procedure showed to be simple, fast, sensitive, requiring only 1.0 mL of urine, 400 μL of organic solvents with a total stirring time of 20 s. Moreover, a variation of inter-day and between-day runs were lower than 10.0% and 11.0%, respectively. Finally, the proposed method was successfully applied to the analysis of 50 urine samples of Brazilian pregnant women to establish reference ranges.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2020.109883DOI Listing
October 2020

A critical viewpoint on current issues, limitations, and future research needs on micro- and nanoplastic studies: From the detection to the toxicological assessment.

Environ Res 2020 03 30;182:109089. Epub 2019 Dec 30.

Department of Chemistry, University of Central Florida, P.O. Box 25000, Orlando, FL, 32816-2366, USA.

Increasing scientific attention on the presence of micro- and nanoplastics (MNPs) in the environments and their potential toxic effects on humans and the ecosystems is evident. Accordingly, the number of publications on this topic has increased substantially from only 5 in 2010 to more than 850 in 2019. Thus, this critical review aimed at providing state-of-the-art information on the existing methods for characterization and detection of MNPs in various matrices, as well as the reported toxic effects of MNPs in both in vivo and in vitro systems, anticipating challenges and providing future needs to improve the current scientific knowledge. We performed a systematic search of recent literature on available methodologies for the characterization/detection of MNPs in different samples, and the summary of such protocols is provided. Also, the existing procedures for in vitro and in vivo toxicity evaluation of MNPs were critically described. The results of our search revealed that quite a great deal of effort had been made to detect, characterize, and quantify the fate and effect of MNPs. However, we are still far from a complete understanding of behaviors of MNPs in the environments and biological systems. Thus, there is a need to advance the existing protocols to improve data accuracy. Besides, more studies that focus on uptake kinetics, accumulation, and biodistribution of MNPs in biological systems are required.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2019.109089DOI Listing
March 2020

An overview of the current progress, challenges, and prospects of human biomonitoring and exposome studies.

J Toxicol Environ Health B Crit Rev 2019 5;22(5-6):131-156. Epub 2019 Sep 5.

Laboratório de Toxicologia Analítica e de Sistemas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , Brazil.

Human Biomonitoring (HB), the process for determining whether and to what extent chemical substances penetrated our bodies, serves as a useful tool to quantify human exposure to pollutants. In cases of nutrition and physiologic status, HB plays a critical role in the identification of excess or deficiency of essential nutrients. In pollutant HB studies, levels of substances measured in body fluids (blood, urine, and breast milk) or tissues (hair, nails or teeth) aid in the identification of potential health risks or associated adverse effects. However, even as a widespread practice in several countries, most HB studies reflect exposure to a single compound or mixtures which are measured at a single time point in lifecycle. On the other hand, throughout an individual's lifespan, the contact with different physical, chemical, and social stressors occurs at varying intensities, differing times and durations. Further, the interaction between stressors and body receptors leads to dynamic responses of the entire biological system including proteome, metabolome, transcriptome, and adductome. Bearing this in mind, a relatively new vision in exposure science, defined as the exposome, is postulated to expand the traditional practice of measuring a single exposure to one or few chemicals at one-time point to an approach that addresses measures of exposure to multiple stressors throughout the lifespan. With the exposome concept, the science of exposure advances to an Environment-Wide Association Perspective, which might exhibit a stronger relationship with good health or disease conditions for an individual (phenotype). Thus, this critical review focused on the current progress of HB and exposome investigations, anticipating some challenges, strategies, and future needs to be taken into account for designing future surveys.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/10937404.2019.1661588DOI Listing
May 2020

In vitro enantioselective human liver microsomal metabolism and prediction of in vivo pharmacokinetic parameters of tetrabenazine by DLLME-CE.

J Pharm Biomed Anal 2016 Sep 20;128:528-537. Epub 2016 Jun 20.

Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil. Electronic address:

A new capillary electrophoresis method for the enantioselective analysis of cis- and trans- dihydrotetrabenazine (diHTBZ) after in vitro metabolism by human liver microsomes (HLMs) was developed. The chiral electrophoretic separations were performed by using tris-phosphate buffer (pH 2.5) containing 1% (w/v) carboxymethyl-β-CD as background electrolyte with an applied voltage of +15kV and capillary temperature kept at 15°C. Dispersive liquid-liquid microextraction was employed to extract the analytes from HLMs. Dichloromethane was used as extraction solvent (75μL) and acetone as disperser solvent (150μL). The method was validated according to official guidelines and showed to be linear over the concentration range of 0.29-19.57μmolL(-1) (r=0.9955) for each metabolite enantiomer. Within- and between-day precision and accuracy evaluated by relative standard deviation and relative error were lower than 15% for all enantiomers. The stability assay showed that the analytes kept stable under handling, storage and in metabolism conditions. After method validation, an enantioselective in vitro metabolism and in vivo pharmacokinetic prediction was carried out. This study showed a stereoselective metabolism and the observed kinetic profile indicated a substrate inhibition behavior. DiHTBZ enantiomers were catalyzed mainly by CYP2C19 and the predicted clearance suggests that liver metabolism is the main route for TBZ elimination which supports the literature data.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2016.06.028DOI Listing
September 2016

A new enantioselective CE method for determination of oxcarbazepine and licarbazepine after fungal biotransformation.

Electrophoresis 2014 Oct 18;35(19):2877-84. Epub 2014 Aug 18.

Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil.

The present work describes, for the first time, the simultaneous separation of oxcarbazepine (OXC) and its active metabolite 10-hydroxy-10,11-dihydrocarbamazepine (licarbazepine, Lic) by chiral CE. The developed method was employed to monitor the enantioselective biotransformation of OXC into its active metabolite by fungi. The electrophoretic separations were performed using 10 mmol/L of a Tris-phosphate buffer solution (pH 2.5) containing 1% w/v of β-CD phosphate sodium salt (P-β-CD) as running electrolyte, -20 kV of applied voltage and a 15°C capillary temperature. The method was linear over the concentration range of 1000-30 000 ng/mL for OXC and 75-900 ng/mL for each Lic enantiomer (r ≥ 0.9952). Within-day precision and accuracy evaluated by RSD and relative errors, respectively, were lower than 15% for all analytes. The validated method was used to evaluate the enantioselective biotransformation of OXC, mediated by fungi, into its active metabolite Lic. This study showed that the fungi Glomerella cingulata (VA1) and Beuveria bassiana were able to enantioselectively metabolize the OXC into Lic after 360 h of incubation. Biotransformation by the fungus Beuveria bassiana showed 79% enantiomeric excess for (S)-(+)-Lic, while VA1 gave an enantiomeric excess of 100% for (S)-(+)-Lic. This study opens a new route to the drug (S)-(+)-licarbazepine.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.201400137DOI Listing
October 2014

Solid phase microextraction and LC-MS/MS for the determination of paliperidone after stereoselective fungal biotransformation of risperidone.

Anal Chim Acta 2012 Sep 9;742:80-9. Epub 2012 Jun 9.

Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.

The present work describes for the first time the use of SPME coupled to LC-MS/MS employing the polar organic mode in a stereoselective fungal biotransformation study to investigate the fungi ability to biotransform the drug risperidone into its chiral and active metabolite 9-hydroxyrisperidone (9-RispOH). The chromatographic separation was performed on a Chiralcel OJ-H column using methanol:ethanol (50:50, v/v) plus 0.2% triethylamine as the mobile phase at a flow rate of 0.8 mL min(-1). The SPME process was performed using a C18 fiber, 30 min of extraction time and 5 min of desorption time in the mobile phase. The method was completely validated and all parameters were in agreement with the literature recommendations. The Cunninghamella echinulata fungus was able to biotransform risperidone into the active metabolite, (+)-9-RispOH, resulting in 100% of enantiomeric excess. The Cunninghamella elegans fungus was also able to stereoselectively biotransform risperidone into (+)- and (-)-9-RispOH enantiomers at different rates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2012.05.056DOI Listing
September 2012
-->