Publications by authors named "Mariana Acevedo"

6 Publications

  • Page 1 of 1

Oxidative stress-induced senescence mediates inflammatory and fibrotic phenotypes in fibroblasts from systemic sclerosis patients.

Rheumatology (Oxford) 2021 Jun 11. Epub 2021 Jun 11.

Faculty of Pharmacy, Université de Montréal, Québec, Canada.

Objective: Systemic sclerosis (SSc) is an autoimmune connective tissue disorder characterized by inflammation and fibrosis. Although constitutive activation of fibroblasts is proposed to be responsible for the fibrotic and inflammatory features of the disease, the underlying mechanism remains elusive and, effective therapeutic targets are still lacking. The aim of this study was to evaluate the role of oxidative stress-induced senescence and its contribution to the pro-fibrotic and pro-inflammatory phenotypes of fibroblasts from SSc patients.

Methods: Dermal fibroblasts were isolated from SSc (n = 13) and healthy (n = 10) donors. Fibroblast's intracellular and mitochondrial reactive oxygen species were determined by flow cytometry. Mitochondrial function measured by Seahorse XF24 analyzer. Fibrotic and inflammatory gene expressions were assessed by qPCR and key pro-inflammatory components of the fibroblasts' secretome (interleukin (IL) 6 and IL8) were quantified by ELISA.

Results: Compared to healthy fibroblasts, SSc fibroblasts displayed higher levels of both intracellular and mitochondrial ROS. Oxidative stress in SSc fibroblasts induced the expression of fibrotic genes and activated the transforming growth factor-β-activated kinase 1 (TAK1) -IκB kinase β (IKKβ)- interferon regulatory factor 5 (IRF5) inflammatory signaling cascade. These cellular responses paralleled the presence of a DNA damage response, a senescence-associated secretory phenotype and a fibrotic response. Treatment of SSc fibroblasts with ROS scavengers reduced their pro-inflammatory secretome production and fibrotic gene expression.

Conclusions: Oxidative stress-induced cellular senescence in SSc fibroblasts underlies their pro-inflammatory and pro-fibrotic phenotypes. Targeting redox imbalance of SSc fibroblasts enhances their in vitro functions and could be of relevance for SSc therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/rheumatology/keab477DOI Listing
June 2021

TRK-Fused Gene (TFG), a protein involved in protein secretion pathways, is an essential component of the antiviral innate immune response.

PLoS Pathog 2021 01 7;17(1):e1009111. Epub 2021 Jan 7.

Faculty of Pharmacy, Université de Montréal, Montréal, Canada.

Antiviral innate immune response to RNA virus infection is supported by Pattern-Recognition Receptors (PRR) including RIG-I-Like Receptors (RLR), which lead to type I interferons (IFNs) and IFN-stimulated genes (ISG) production. Upon sensing of viral RNA, the E3 ubiquitin ligase TNF Receptor-Associated Factor-3 (TRAF3) is recruited along with its substrate TANK-Binding Kinase (TBK1), to MAVS-containing subcellular compartments, including mitochondria, peroxisomes, and the mitochondria-associated endoplasmic reticulum membrane (MAM). However, the regulation of such events remains largely unresolved. Here, we identify TRK-Fused Gene (TFG), a protein involved in the transport of newly synthesized proteins to the endomembrane system via the Coat Protein complex II (COPII) transport vesicles, as a new TRAF3-interacting protein allowing the efficient recruitment of TRAF3 to MAVS and TBK1 following Sendai virus (SeV) infection. Using siRNA and shRNA approaches, we show that TFG is required for virus-induced TBK1 activation resulting in C-terminal IRF3 phosphorylation and dimerization. We further show that the ability of the TRAF3-TFG complex to engage mTOR following SeV infection allows TBK1 to phosphorylate mTOR on serine 2159, a post-translational modification shown to promote mTORC1 signaling. We demonstrate that the activation of mTORC1 signaling during SeV infection plays a positive role in the expression of Viperin, IRF7 and IFN-induced proteins with tetratricopeptide repeats (IFITs) proteins, and that depleting TFG resulted in a compromised antiviral state. Our study, therefore, identifies TFG as an essential component of the RLR-dependent type I IFN antiviral response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.ppat.1009111DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790228PMC
January 2021

Phosphorylation of SOCS1 Inhibits the SOCS1-p53 Tumor Suppressor Axis.

Cancer Res 2019 07 17;79(13):3306-3319. Epub 2019 May 17.

Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Québec, Canada.

Expression of the suppressor of cytokine signaling-1 (SOCS1) is inactivated in hematopoietic and solid cancers by promoter methylation, miRNA-mediated silencing, and mutations. Paradoxically, SOCS1 is also overexpressed in many human cancers. We report here that the ability of SOCS1 to interact with p53 and regulate cellular senescence depends on a structural motif that includes tyrosine (Y)80 in the SH2 domain of SOCS1. Mutations in this motif are found at low frequency in some human cancers, and substitution of Y80 by a phosphomimetic residue inhibits p53-SOCS1 interaction and its functional consequences, including stimulation of p53 transcriptional activity, growth arrest, and cellular senescence. Mass spectrometry confirmed SOCS1 Y80 phosphorylation in cells, and a new mAb was generated to detect its presence in tissues by IHC. A tyrosine kinase library screen identified the SRC family as Y80-SOCS1 kinases. SRC family kinase inhibitors potentiated the SOCS1-p53 pathway and reinforced SOCS1-induced senescence. Samples from human lymphomas that often overexpress SOCS1 also displayed SRC family kinase activation, constitutive phosphorylation of SOCS1 on Y80, and SOCS1 cytoplasmic localization. Collectively, these results reveal a mechanism that inactivates the SOCS1-p53 senescence pathway and suggest that inhibition of SRC family kinases as personalized treatment in patients with lymphomas may be successful. SIGNIFICANCE: These findings show that SOCS1 phosphorylation by the SRC family inhibits its tumor-suppressive activity, indicating that patients with increased SOCS1 phosphorylation may benefit from SRC family kinase inhibitors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-18-1503DOI Listing
July 2019

The sequence features that define efficient and specific hAGO2-dependent miRNA silencing guides.

Nucleic Acids Res 2018 09;46(16):8181-8196

Institut de recherche en immunologie et en cancérologie (IRIC), Université de Montréal, Montréal, Québec H3C 3J7, Canada.

MicroRNAs (miRNAs) are ribonucleic acids (RNAs) of ∼21 nucleotides that interfere with the translation of messenger RNAs (mRNAs) and play significant roles in development and diseases. In bilaterian animals, the specificity of miRNA targeting is determined by sequence complementarity involving the seed. However, the role of the remaining nucleotides (non-seed) is only vaguely defined, impacting negatively on our ability to efficiently use miRNAs exogenously to control gene expression. Here, using reporter assays, we deciphered the role of the base pairs formed between the non-seed region and target mRNA. We used molecular modeling to reveal that this mechanism corresponds to the formation of base pairs mediated by ordered motions of the miRNA-induced silencing complex. Subsequently, we developed an algorithm based on this distinctive recognition to predict from sequence the levels of mRNA downregulation with high accuracy (r2 > 0.5, P-value < 10-12). Overall, our discovery improves the design of miRNA-guide sequences used to simultaneously downregulate the expression of multiple predetermined target genes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/nar/gky546DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6144789PMC
September 2018

Quantitative SUMO proteomics reveals the modulation of several PML nuclear body associated proteins and an anti-senescence function of UBC9.

Sci Rep 2018 05 17;8(1):7754. Epub 2018 May 17.

Institute of Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3C 3J7, Canada.

Several regulators of SUMOylation have been previously linked to senescence but most targets of this modification in senescent cells remain unidentified. Using a two-step purification of a modified SUMO3, we profiled the SUMO proteome of senescent cells in a site-specific manner. We identified 25 SUMO sites on 23 proteins that were significantly regulated during senescence. Of note, most of these proteins were PML nuclear body (PML-NB) associated, which correlates with the increased number and size of PML-NBs observed in senescent cells. Interestingly, the sole SUMO E2 enzyme, UBC9, was more SUMOylated during senescence on its Lys-49. Functional studies of a UBC9 mutant at Lys-49 showed a decreased association to PML-NBs and the loss of UBC9's ability to delay senescence. We thus propose both pro- and anti-senescence functions of protein SUMOylation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-018-25150-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5958138PMC
May 2018

A CDK4/6-Dependent Epigenetic Mechanism Protects Cancer Cells from PML-induced Senescence.

Cancer Res 2016 06 29;76(11):3252-64. Epub 2016 Mar 29.

Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada.

Promyelocytic leukemia (PML) plays a tumor suppressive role by inducing cellular senescence in response to oncogenic stress. However, tumor cell lines fail to engage in complete senescence upon PML activation. In this study, we investigated the mechanisms underlying resistance to PML-induced senescence. Here, we report that activation of the cyclin-dependent kinases CDK4 and CDK6 are essential and sufficient to impair senescence induced by PML expression. Disrupting CDK function by RNA interference or pharmacological inhibition restored senescence in tumor cells and diminished their tumorigenic potential in mouse xenograft models. Complete senescence correlated with an increase in autophagy, repression of E2F target genes, and an gene expression signature of blocked DNA methylation. Accordingly, treatment of tumor cells with inhibitors of DNA methylation reversed resistance to PML-induced senescence. Further, CDK inhibition with palbociclib promoted autophagy-dependent degradation of the DNA methyltransferase DNMT1. Lastly, we found that CDK4 interacted with and phosphorylated DNMT1 in vitro, suggesting that CDK activity is required for its stabilization. Taken together, our findings highlight a potentially valuable feature of CDK4/6 inhibitors as epigenetic modulators to facilitate activation of senescence programs in tumor cells. Cancer Res; 76(11); 3252-64. ©2016 AACR.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-15-2347DOI Listing
June 2016
-->