Publications by authors named "Maria Pannell"

6 Publications

  • Page 1 of 1

Selective blood-brain barrier permeabilisation of brain metastases by a type-1 receptor selective tumour necrosis factor mutein.

Neuro Oncol 2021 Jul 23. Epub 2021 Jul 23.

Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.

Background: Metastasis to the brain is a major challenge with poor prognosis. The blood-brain barrier (BBB) is a significant impediment to effective treatment, being intact during the early stages of tumour development and heterogeneously permeable at later stages. Intravenous injection of tumour necrosis factor (TNF) selectively induces BBB permeabilisation at sites of brain micrometastasis, in a TNF type-1 receptor (TNFR1) dependent manner. Here, to enable clinical translation, we have developed a TNFR1-selective agonist variant of human TNF that induces BBB permeabilisation, whilst minimising potential toxicity.

Methods: A library of human TNF muteins (mutTNF) were generated and assessed for binding specificity to mouse and human TNFR1/2, endothelial permeabilising activity in vitro, potential immunogenicity and circulatory half-life. The permeabilising ability of the most promising variant was assessed in vivo in a model of brain metastasis.

Results: The primary mutTNF variant showed similar affinity for human TNFR1 than wild-type human TNF, similar affinity for mouse TNFR1 as wild-type mouse TNF, undetectable binding to human/mouse TNFR2, low potential immunogenicity and permeabilisation of an endothelial monolayer. Circulatory half-life was similar to mouse/human TNF and BBB permeabilisation was induced selectively at sites of micrometastases in vivo, with a time window of ≥24h and enabling delivery of agents within a therapeutically-relevant range (0.5-150kDa), including the clinically approved therapy, trastuzumab.

Conclusions: We have developed a clinically-translatable mutTNF that selectively opens the BBB at micrometastatic sites, whilst leaving the rest of the cerebrovasculature intact. This approach will open a window for brain metastasis treatment that currently does not exist.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/neuonc/noab177DOI Listing
July 2021

Imaging of translocator protein upregulation is selective for pro-inflammatory polarized astrocytes and microglia.

Glia 2020 02 3;68(2):280-297. Epub 2019 Sep 3.

Department of Oncology, Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK.

Translocator protein (TSPO) expression is increased in activated glia, and has been used as a marker of neuroinflammation in PET imaging. However, the extent to which TSPO upregulation reflects a pro- or anti-inflammatory phenotype remains unclear. Our aim was to determine whether TSPO upregulation in astrocytes and microglia/macrophages is limited to a specific inflammatory phenotype. TSPO upregulation was assessed by flow cytometry in cultured astrocytes, microglia, and macrophages stimulated with lipopolysaccharide (LPS), tumor necrosis factor (TNF), or interleukin-4 (Il-4). Subsequently, mice were injected intracerebrally with either a TNF-inducing adenovirus (AdTNF) or IL-4. Glial expression of TSPO and pro-/anti-inflammatory markers was assessed by immunohistochemistry/fluorescence and flow cytometry. Finally, AdTNF or IL-4 injected mice underwent PET imaging with injection of the TSPO radioligand F-DPA-713, followed by ex vivo autoradiography. TSPO expression was significantly increased in pro-inflammatory microglia/macrophages and astrocytes both in vitro, and in vivo after AdTNF injection (p < .001 vs. control hemisphere), determined both histologically and by FACS. Both PET imaging and autoradiography revealed a significant (p < .001) increase in F-DPA-713 binding in the ipsilateral hemisphere of AdTNF-injected mice. In contrast, no increase in either TSPO expression assessed histologically and by FACS, or ligand binding by PET/autoradiography was observed after IL-4 injection. Taken together, these results suggest that TSPO imaging specifically reveals the pro-inflammatory population of activated glial cells in the brain in response to inflammatory stimuli. Since the inflammatory phenotype of glial cells is critical to their role in neurological disease, these findings may enhance the utility and application of TSPO imaging.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.23716DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6916298PMC
February 2020

Adoptive transfer of M2 macrophages reduces neuropathic pain via opioid peptides.

J Neuroinflammation 2016 10 7;13(1):262. Epub 2016 Oct 7.

Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.

Background: During the inflammation which occurs following nerve damage, macrophages are recruited to the site of injury. Phenotypic diversity is a hallmark of the macrophage lineage and includes pro-inflammatory M1 and anti-inflammatory M2 populations. Our aim in this study was to investigate the ability of polarized M0, M1, and M2 macrophages to secrete opioid peptides and to examine their relative contribution to the modulation of neuropathic pain.

Methods: Mouse bone marrow-derived cells were cultured as unstimulated M0 macrophages or were stimulated into an M1 phenotype using lipopolysaccharide and interferon-γ or into an M2 phenotype using interleukin-4. The macrophage phenotypes were verified using flow cytometry for surface marker analysis and cytokine bead array for cytokine profile assessment. Opioid peptide levels were measured by radioimmunoassay and enzyme immunoassay. As a model of neuropathic pain, a chronic constriction injury (CCI) of the sciatic nerve was employed. Polarized M0, M1, and M2 macrophages (5 × 10 cells) were injected perineurally twice, on days 14 and 15 following CCI or sham surgery. Mechanical and heat sensitivity were measured using the von Frey and Hargreaves tests, respectively. To track the injected macrophages, we also transferred fluorescently stained polarized cells and analyzed the surface marker profile of endogenous and injected cells in the nerves ex vivo.

Results: Compared to M0 and M1 cells, M2 macrophages contained and released higher amounts of opioid peptides, including Met-enkephalin, dynorphin A (1-17), and β-endorphin. M2 cells transferred perineurally at the nerve injury site reduced mechanical, but not heat hypersensitivity following the second injection. The analgesic effect was reversed by the perineurally applied opioid receptor antagonist naloxone methiodide. M2 cells did not affect sensitivity following sham surgery. Neither M0 nor M1 cells altered mechanical and heat sensitivity in CCI or sham-operated animals. Tracing the fluorescently labeled M0, M1, and M2 cells ex vivo showed that they remained in the nerve and preserved their phenotype.

Conclusions: Perineural transplantation of M2 macrophages resulted in opioid-mediated amelioration of neuropathy-induced mechanical hypersensitivity, while M1 macrophages did not exacerbate pain. Therefore, rather than focusing on macrophage-induced pain generation, promoting opioid-mediated M2 actions may be more relevant for pain control.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12974-016-0735-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5055715PMC
October 2016

The subpopulation of microglia expressing functional muscarinic acetylcholine receptors expands in stroke and Alzheimer's disease.

Brain Struct Funct 2016 Mar 19;221(2):1157-72. Epub 2014 Dec 19.

Department of Cellular Neurosciences, Max Delbrück Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125, Berlin, Germany.

Microglia undergo a process of activation in pathology which is controlled by many factors including neurotransmitters. We found that a subpopulation (11 %) of freshly isolated adult microglia respond to the muscarinic acetylcholine receptor agonist carbachol with a Ca(2+) increase and a subpopulation of similar size (16 %) was observed by FACS analysis using an antibody against the M3 receptor subtype. The carbachol-sensitive population increased in microglia/brain macrophages isolated from tissue of mouse models for stroke (60 %) and Alzheimer's disease (25 %), but not for glioma and multiple sclerosis. Microglia cultured from adult and neonatal brain contained a carbachol-sensitive subpopulation (8 and 9 %), which was increased by treatment with interferon-γ to around 60 %. This increase was sensitive to blockers of protein synthesis and correlated with an upregulation of the M3 receptor subtype and with an increased expression of MHC-I and MHC-II. Carbachol was a chemoattractant for microglia and decreased their phagocytic activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00429-014-0962-yDOI Listing
March 2016

The subpopulation of microglia sensitive to neurotransmitters/neurohormones is modulated by stimulation with LPS, interferon-γ, and IL-4.

Glia 2014 May 7;62(5):667-79. Epub 2014 Feb 7.

Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany.

Recently, neurotransmitters/neurohormones have been identified as factors controlling the function of microglia, the immune competent cells of the central nervous system. In this study, we compared the responsiveness of microglia to neurotransmitters/neurohormones. We freshly isolated microglia from healthy adult C57Bl/6 mice and found that only a small fraction (1-20%) responded to the application of endothelin, histamine, substance P, serotonin, galanin, somatostatin, angiotensin II, vasopressin, neurotensin, dopamine, or nicotine. In cultured microglia from neonatal and adult mice, a similarly small population of cells responded to these neurotransmitters/neurohormones. To induce a proinflammatory phenotype, we applied lipopolysaccaride (LPS) or interferon-gamma (IFN-γ) to the cultures for 24 h. Several of the responding populations increased; however, there was no uniform pattern when comparing adult with neonatal microglia or LPS with IFN-γ treatment. IL-4 as an anti-inflammatory substance increased the histamine-, substance P-, and somatostatin-sensitive populations only in microglia from adult, but not in neonatal cells. We also found that the expression of different receptors was not strongly correlated, indicating that there are many different populations of microglia with a distinct set of receptors. Our results demonstrate that microglial cells are a heterogeneous population with respect to their sensitivity to neurotransmitters/neurohormones and that they are more responsive in defined activation states.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.22633DOI Listing
May 2014

Transmitter- and hormone-activated Ca(2+) responses in adult microglia/brain macrophages in situ recorded after viral transduction of a recombinant Ca(2+) sensor.

Cell Calcium 2011 Jun 4;49(6):365-75. Epub 2011 May 4.

Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany.

In vitro studies show that microglia, the resident immune cells of the brain, express neurotransmitter and neuropeptide receptors which are linked to Ca(2+) signaling. Here we describe an approach to obtain Ca(2+) recordings from microglia in situ. We injected a retrovirus encoding a calcium sensor into the cortex of mice 2 days after stimulation of microglial proliferation by a stab wound injury. Microglial cells were identified with tomato lectin in acute slices prepared 3, 6, 21 and 42 days after the injury. The membrane current profile and the ameboid morphology indicated that microglial cells were activated at day 6 while at day 42 they resembled resting microglia. We recorded transient Ca(2+) responses to application of ATP, endothelin-1, substance P, histamine and serotonin. The fluorescence amplitude of ATP was increased only at day 6 compared to other time points, while responses to all other ligands did not vary. Only half of the microglial cells that responded to ATP also responded to endothelin-1, serotonin and histamine. Substance P, in contrast, showed a complete overlap with the ATP responding microglial population at day 6, at day 42 this population was reduced to 55%. Cultured cells were less responsive to these ligands. This study shows that in situ microglia consist of heterogeneous populations with respect to their sensitivity to neuropeptides and -transmitters.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ceca.2011.03.005DOI Listing
June 2011
-->