Publications by authors named "Maria Biela"

4 Publications

  • Page 1 of 1

Proteomic biomarkers in Gaucher disease.

J Clin Pathol 2021 Jan 14;74(1):25-29. Epub 2020 May 14.

Metabolic Diseases and Diabetology Department, Szpital Uniwersytecki w Krakowie, Kraków, małopolskie, Poland

Aims: The research work was conducted to find new biomarkers and potential drug targets in Gaucher disease type 1 (GDt1) by analysing the serum proteins.

Methods: This study was an observational, cross-sectional analysis of a group of 12 adult participants: six Gaucher disease (GD) patients and six healthy control. Fasting venous blood underwent proteomics analysis and molecular tests. Over 400 proteins were analysed, and in case of significantly different concentrations between the study and control group, we checked corresponding genes to confirm changes in their expression and consistency with protein alteration.

Results: We found 31 proteins that significantly differed in concentration between GDt1 patients and a control group. These were mostly proteins involved in the regulation of the inflammatory processes and haemostasis. The levels of proteins such as alpha-1-acid glycoprotein 2, S100-A8/A9, adenyl cyclase-associated protein 1, haptoglobin or translationally controlled tumour protein related to inflammation process were significantly higher in GD patients than in control group, whereas the levels of some proteins such as heavy constant mu and gamma 4 or complement C3/C4 complex involved in humoral response like immunoglobulins were significantly decreased in GD patients. Alteration in two proteins concentration was confirmed in RNA analysis.

Conclusions: The work revealed few new targets for further investigation which may be useful in clinical practice for diagnosis, treatment and monitoring GDt1 patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jclinpath-2020-206580DOI Listing
January 2021

Specific gene expression in type 1 diabetic patients with and without cardiac autonomic neuropathy.

Sci Rep 2020 03 27;10(1):5554. Epub 2020 Mar 27.

Department of Metabolic Diseases, University Hospital, Krakow, Poland.

We hypothesized that some molecular pathways might interact to initiate the process of nervous tissue destruction, promoting cardiac autonomic neuropathy (CAN) in the course of diabetes type 1 (T1D). The study group consisted of 60 T1D patients (58.33% women/41.67% men), on standard therapy. The control group consisted of twenty healthy volunteers recruited in accordance with age, gender and body weight. The presence of CAN was documented by the Ewing test method (ProSciCard apparatus). A microarray data analysis was performed using Gene Spring version 13. The microarray results for selected genes were confirmed by real-time PCR (qRT-PCR), using specific TaqMan Gene Expression Assays. Plasma IL-6 content was measured by an enzyme-linked immunosorbent assay (ELISA). The p < 0.05 value was considered as statistically significant. The microarray analysis, confirmed by qRTPCR, showed significant up-regulation of autophagy, quantity of mitochondria, quality regulatory genes (mTOR, GABARAPL2) apoptosis, ER-stress and inflammation (NFKB1, IL1b, IL1R1, SOD1), in T1D when compared to the control group. A significantly higher IL-6 protein level was observed in T1D patients, in comparison to the control group. We concluded that the observed changes in gene expression and activation of intracellular pathways give a coherent picture of the important role of oxidative stress in inflammation and the activation of apoptosis in the pathomechanism of DM. The significance of the inflammatory process, confirmed by the increased level of the inflammation biomarker IL-6 in the pathomechanisms of CAN was shown even in patients with properly treated T1D.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-62498-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7101413PMC
March 2020

Epigenetic mechanism in search for the pathomechanism of diabetic neuropathy development in diabetes mellitus type 1 (T1DM).

Endocrine 2020 04 4;68(1):235-240. Epub 2020 Jan 4.

University Hospital in Krakow, Kraków, Poland.

Objective: The aim of this study was to check the hypothesis concerning the crucial role of DNA methylation (one of the epigenetic mechanisms) within selected genes related to the destruction and regeneration of neural cells and its input in the pathogenesis of diabetic neuropathy, using a model of the DNA in peripheral blood cells.

Methods: A cross-sectional, case-control study was conducted, consisting of 24 adult Type 1 Diabetes Melitus (T1DM) patients with autonomic neuropathy (CAN), 25 T1DM patients without neuropathy and 25 matched, healthy adults acting as a control (Ctrl). The Ewing's tests, using the ProSciCard apparatus (Mewicon CATEEM-Tec GmbH), was employed to assess the severity of the patients' symptoms of autonomic neuropathy. For DNA methylation analysis, DNA material of each sample DNA after bisulfite conversion was used for the hybridization of BeadChips (Infinium Methylation EPIC Kit, Illumina), and imaged on the Illumina HiScan. The changes in the expression of selected genes were examined using real-time PCR. Probes were labeled using fluorescein amidite, FAM (Thermo Fisher Scientific). Amplification was performed using the continuous fluorescence detection 7900 HT Fast Real-Time PCR system (Thermo Fisher Scientific). The expression ratio of the target mRNA was normalized to the level of 18s RNA and compared with the control. Statistical analysis was performed using Statistica version 13.1. The statistically significant results were recognized, with a value of p < 0.05.

Results: Clinical analysis of the investigated groups revealed a significantly higher percentage of personal insulin pump users in the group without neuropathy. The glucose metabolic control, based on the HbA1c level analysis, was also significantly better in T1DM patients without CAN. The Bumphunter method for DNA methylation analysis showed statistically significant regions related to the genes involved in nerve regeneration ninjurin 2 (NINJ2) and functionality (BR serine/threonine kinase 2 BRSK2, claudin 4 CLDN4). When compared with T1DM patients without neuropathy, T1DM patients with neuropathy showed significantly increased methylation in the first NINJ2 axon, and a lower level of DNA methylation in the region of the first intron of BRSK2, as well as the CLDN4 5'UTR regions. The qRT-PCR results confirmed the decreased expression of NINJ2 and CLDN4 genes in patients with T1DM with CAN.

Conclusions: The different DNA methylation profiles, correlating with the expression of genes related to nervous tissue development and regeneration in patients with T1DM with autonomic neuropathy provide evidence for the role of epigenetic mechanisms promoting the development of CAN, a chronic complication of T1DM.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12020-019-02172-9DOI Listing
April 2020

Effect of insulin resistance on whole blood mRNA and microRNA expression affecting bone turnover.

Eur J Endocrinol 2019 Nov;181(5):525-537

Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland.

Objective: To evaluate the effect of insulin resistance in obesity on the expression in whole blood of mRNA and miRNA affecting bone homeostasis as well as to estimate the influence of oral glucose load (OGTT) on serum osteocalcin concentration in obese individuals with and without insulin resistance.

Design: Cross-sectional study.

Methods: Carboxylated (cOC), undercarboxylated (ucOC) and total osteocalcin were measured by ELISA in the serum of obese subjects with insulin resistance (n = 41) and obese subjects without insulin resistance (n = 41) (control group) during OGTT. Analysis of gene expression (microarray) and miRNAs (real-time PCR) was performed in venous blood (representating samples) collected before OGTT from obese with insulin resistance and controls.

Results: Obese subjects with insulin resistance (higher HOMA-IR and lower oral glucose insulin sensitivity index) presented significantly increased expression of WNT signalling inhibitors (DKK1, DKK2, SOST, SFRP1) and downregulation of the key factor in WNT signalling - β catenin participating in osteoblasts differentiation. Expression of miRNA involved in osteoblastogenesis was also inhibited (miR-29b, miR-181a, miR-210, miR-324-3p). During OGTT, contrary to the control group, subjects with insulin resistance presented suppression of cOC and total OC decrease after 1 and 2 h of oral glucose load.

Conclusions: Obese subjects with insulin resistance may have defects in osteoblastogenesis that was demonstrated via key signalling molecules mRNA downregulation, and increased expression of WNT antagonists as well as inhibition of expression of miRNA participating in the regulation of osteoblast differentiation. Disturbed osteoblastogenesis in insulin-resistant subjects results in the suppression of blood carboxylated and total osteocalcin decrease during OGTT.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1530/EJE-19-0542DOI Listing
November 2019