Publications by authors named "Marcella Coronnello"

25 Publications

  • Page 1 of 1

Establishment and characterization of a new spontaneously immortalized ER/PR/HER2 human breast cancer cell line, DHSF-BR16.

Sci Rep 2021 Apr 16;11(1):8340. Epub 2021 Apr 16.

Department of Health Science, Section of Clinical Pharmacology and Oncology, University of Florence, viale Pieraccini, 6, 50139, Florence, Italy.

Invasive ductal carcinoma (IDC) constitutes the most frequent malignant cancer endangering women's health. In this study, a new spontaneously immortalized breast cancer cell line, DHSF-BR16 cells, was isolated from the primary IDC of a 74-years old female patient, treated with neoadjuvant chemotherapy and disease-free 5-years after adjuvant chemotherapy. Primary breast cancer tissue surgically removed was classified as ER/PR/HER2, and the same phenotype was maintained by DHSF-BR16 cells. We examined DHSF-BR16 cell morphology and relevant biological and molecular markers, as well as their response to anticancer drugs commonly used for breast cancer treatment. MCF-7 cells were used for comparison purposes. The DHSF-BR16 cells showed the ability to form spheroids and migrate. Furthermore, DHSF-BR16 cells showed a mixed stemness phenotype (i.e. CD44/CD24), high levels of cytokeratin 7, moderate levels of cytokeratin 8 and 18, EpCAM and E-Cadh. Transcriptome analysis showed 2071 differentially expressed genes between DHSF-BR16 and MCF-7 cells (logFC > 2, p-adj < 0.01). Several genes were highly upregulated or downregulated in the new cell line (log2 scale fold change magnitude within - 9.6 to + 12.13). A spontaneous immortalization signature, mainly represented by extracellular exosomes-, plasma membrane- and endoplasmic reticulum membrane pathways (GO database) as well as by metabolic pathways (KEGG database) was observed in DHSF-BR16 cells. Also, these cells were more resistant to anthracyclines compared with MCF-7 cells. Overall, DHSF-BR16 cell line represents a relevant model useful to investigate cancer biology, to identify both novel prognostic and drug response predictive biomarkers as well as to assess new therapeutic strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-021-87362-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8052418PMC
April 2021

Synthesis of functionalised organochalcogenides and in vitro evaluation of their antioxidant activity.

Bioorg Chem 2021 May 9;110:104812. Epub 2021 Mar 9.

University of Florence, Department of Neurosciences, Psychology, Drug Research and Child's Health - Section of Pharmacology, Viale Pieraccini 6, 50139 Firenze, Italy.

Differently substituted β-hydroxy- and β-amino dialkyl and alkyl-aryl tellurides and selenides have been prepared through ring-opening reactions of epoxides and aziridines with selenium- or tellurium-centered nucleophiles. The antioxidant properties and the cytotoxicity of such compounds have been investigated on normal human dermal fibroblasts. Most of the studied compounds exhibited a low cytotoxicity and a number of them proved to be non-toxic, not showing any effect on cell viability even at the highest concentration used (100 μM). The obtained results showed a significant antioxidant potential of the selected organotellurium compounds, particularly evident under conditions of exogenously induced oxidative stress. The antioxidant activity of selenium-containing analogues of active tellurides has also been evaluated on cells, highlighting that the replacement of Se with Te brought about a significant increase in the peroxidase activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2021.104812DOI Listing
May 2021

Co-Delivery of Berberine Chloride and Tariquidar in Nanoliposomes Enhanced Intracellular Berberine Chloride in a Doxorubicin-Resistant K562 Cell Line Due to P-gp Overexpression.

Pharmaceutics 2021 Feb 26;13(3). Epub 2021 Feb 26.

Department of Chemistry "Ugo Schiff", University of Florence, via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.

The MDR phenomenon has become a major obstacle in the treatment of cancers, and among the strategies to reverse it, the inhibition of P-gp function and expression is essential to increase for effective anticancer drugs. In the present paper, the co-delivery of berberine chloride and tariquidar loaded nanoliposomes was investigated with the aim of enhancing solubility and improving desired effects for the antineoplastic drug and the P-gp inhibitor. Developed nanoliposomes were loaded with the electron-dense enzyme horseradish peroxidase, and analyzed by TEM to investigate their ability to enter in both K562 and K562/DOXO cell lines. Receptor-mediated endocytosis was evidenced for both cell lines. Nanoliposomes were loaded with tariquidar, berberine chloride, or both, maintaining chemical and physical characteristics-i.e., size, homogeneity, and encapsulation efficiency-and high suitability for parenteral administration. Tariquidar was able to reverse the MDR in the K562/DOXO cell line. Tariquidar- and berberine chloride-loaded nanoliposomes showed a significant increase of berberine chloride accumulation in tumor cells, which could be correlated with resensitization of the resistant cells to the antitumor agent. These results suggest that the co-delivery of the P-gp inhibitor, tariquidar, and the cytotoxicity inducer, berberine chloride, looks like a promising approach to overcome the MDR.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/pharmaceutics13030306DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8025904PMC
February 2021

β3-Adrenoreceptor Blockade Reduces Hypoxic Myeloid Leukemic Cells Survival and Chemoresistance.

Int J Mol Sci 2020 Jun 12;21(12). Epub 2020 Jun 12.

Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, 50139 Florence, Italy.

β-adrenergic signaling is known to be involved in cancer progression; in particular, beta3-adrenoreceptor (β3-AR) is associated with different tumor conditions. Currently, there are few data concerning β3-AR in myeloid malignancies. Here, we evaluated β3-AR in myeloid leukemia cell lines and the effect of β3-AR antagonist SR59230A. In addition, we investigated the potential role of β3-AR blockade in doxorubicin resistance. Using flow cytometry, we assessed cell death in different in vitro myeloid leukemia cell lines (K562, KCL22, HEL, HL60) treated with SR59230A in hypoxia and normoxia; furthermore, we analyzed β3-AR expression. We used healthy bone marrow cells (BMCs), peripheral blood mononuclear cells (PBMCs) and cord blood as control samples. Finally, we evaluated the effect of SR59230A plus doxorubicin on K562 and K562/DOX cell lines; K562/DOX cells are resistant to doxorubicin and show P-glycoprotein (P-gp) overexpression. We found that SR59230A increased cancer cell lines apoptosis especially in hypoxia, resulting in selective activity for cancer cells; moreover, β3-AR expression was higher in malignancies, particularly under hypoxic condition. Finally, we observed that SR59230A plus doxorubicin increased doxorubicin resistance reversion mainly in hypoxia, probably acting on P-gp. Together, these data point to β3-AR as a new target and β3-AR blockade as a potential approach in myeloid leukemias.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms21124210DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352890PMC
June 2020

Dual P-Glycoprotein and CA XII Inhibitors: A New Strategy to Reverse the P-gp Mediated Multidrug Resistance (MDR) in Cancer Cells.

Molecules 2020 Apr 10;25(7). Epub 2020 Apr 10.

Department of Health Sciences-Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.

A new series of -bis(alkanol)amine aryl diesters was synthesized and studied as dual P-glycoprotein (P-gp) and carbonic anhydrase XII inhibitors (CA XII). These hybrids should be able to synergistically overcome P-gp mediated multidrug resistance (MDR) in cancer cells. It was reported that the efflux activity of P-gp could be modulated by CA XII, as the pH reduction caused by CA XII inhibition produces a significant decrease in P-gp ATPase activity. The new compounds reported here feature both P-gp and CA XII binding moieties. These hybrids contain a -bis(alkanol)amine diester scaffold found in P-glycoprotein ligands and a coumarin or benzene sulfonamide moiety to target CA XII. Many compounds displayed a dual activity against P-gp and CA XII being active in the Rhd 123 uptake test on K562/DOX cells and in the hCA XII inhibition test. On LoVo/DOX cells, that overexpress both P-gp and CA XII, some coumarin derivatives showed a high MDR reversal effect in Rhd 123 uptake and doxorubicin cytotoxicity enhancement tests. In particular, compounds and showed higher activity than verapamil and were more potent on LoVo/DOX than on K562/DOX cells overexpressing only P-gp. They can be considered as valuable candidates for selective P-gp/CA XII inhibition in MDR cancer cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules25071748DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181201PMC
April 2020

Role of ATP-binding cassette transporters in cancer initiation and progression.

Semin Cancer Biol 2020 02 11;60:72-95. Epub 2019 Aug 11.

Department of Health Sciences, University of Florence, Florence, Italy.

ATP Binding Cassette (ABC) transporters, widely studied in cancer for their role in drug resistance, have been more recently also considered for their contribution to cancer cell biology. To date, many data provide evidences for their potential role in all the phases of cancer development from cancer susceptibility, tumor initiation, tumor progression and metastasis. Although many evidences are based on correlative analyses, data describing a direct or indirect role of ABC transporters in cancer biology are increasing. Overall, current available information suggests a relevant molecular effector role of some ABC transporters in cancer invasion and metastasis as reported in experimental tumor models. From a therapeutic point of view, due to the physiological relevant roles that ABC transporters play in the organism, the capability to selectively inhibit the function or the expression of ABC transporters in cancer stem cells or other tumor cells, represents the main challenge for researcher scientists. A detailed and updated description of the current knowledge on the role of ABC transporters in cancer biology is provided.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcancer.2019.08.006DOI Listing
February 2020

Modulation of the spacer in N,N-bis(alkanol)amine aryl ester heterodimers led to the discovery of a series of highly potent P-glycoprotein-based multidrug resistance (MDR) modulators.

Eur J Med Chem 2019 Jun 27;172:71-94. Epub 2019 Mar 27.

Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019 Sesto Fiorentino (FI), Italy.

In this study, a new series of N,N-bis(alkanol)amine aryl ester heterodimers was synthesized and studied. The new compounds were designed based on the structures of our previous arylamine ester derivatives endowed with high P-gp-dependent multidrug resistance reversing activity on a multidrug-resistant leukemia cell line. All new compounds were active in the pirarubicin uptake assay on the doxorubicin-resistant erythroleukemia K562 cells (K562/DOX). Compounds bearing a linker made up of 10 methylenes showed unprecedented high reversal activities regardless of the combination of aromatic moieties. Docking results obtained by an in silico study supported the data obtained by the biological tests and a study devoted to establish the chemical stability in phosphate buffer solution (PBS) and human plasma showed that only a few compounds exhibited a significant degradation in the human plasma matrix. Ten selected non-hydrolysable derivatives were able to inhibit the P-gp-mediated rhodamine-123 efflux on K562/DOX cells, and the evaluation of their apparent permeability and ATP consumption on other cell lines suggested that the compounds can behave as unambiguous or not transported substrates. The activity of these the compounds on the transport proteins breast cancer resistance protein (BCRP) and multidrug resistance associated protein 1 (MRP1) was also analyzed. All tested derivatives displayed a moderate potency on the BCRP overexpressing cells; while only four molecules showed to be effective on MRP1 overexpressing cells, highlighting a clear structural requirement for selectivity. In conclusion, we have identified a new very powerful series of compounds which represent interesting leads for the development of new potent and efficacious P-gp-dependent MDR modulators.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2019.03.054DOI Listing
June 2019

Design and synthesis of new potent N,N-bis(arylalkyl)piperazine derivatives as multidrug resistance (MDR) reversing agents.

Eur J Med Chem 2018 Mar 5;147:7-20. Epub 2018 Feb 5.

Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019 Sesto Fiorentino (FI), Italy. Electronic address:

A series of 1,4-substituted arylalkyl piperazine derivatives were synthesized and studied with the aim to obtain potent P-gp-dependent multidrug-resistant (MDR) reversers. The new compounds were designed on the basis of the structures of our previous arylamine ester derivatives endowed with high P-gp-dependent multidrug resistance reversing activity. All new compounds were active in the pirarubicin uptake assay on the doxorubicin-resistant erythroleukemia K562 cells (K562/DOX). In particular, compounds bearing methoxy aromatic moieties showed fairly high reversal activities. The most potent compounds, 8, 9, 10 and 13, were further studied by evaluating their doxorubicin cytotoxicity enhancement (reversal fold, RF) and the inhibition of P-gp-mediated rhodamine-123 (Rhd 123) efflux on the K562/DOX cell line. The results of all pharmacological assays indicated that the combination of a basic piperazine scaffold with arylalkyl residues allowed us to obtain very interesting P-gp modulating compounds. Two long-lasting P-gp pump modulators (9 and 10) were identified; they were able to inhibit remarkably the P-gp substrate rhodamine-123 efflux on the resistant K562/DOX cell line after 60 min. Overall compound 9 appeared the most promising compound being a potent and long-lasting P-gp-dependent MDR modulator.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2018.01.092DOI Listing
March 2018

Design and synthesis of aminoester heterodimers containing flavone or chromone moieties as modulators of P-glycoprotein-based multidrug resistance (MDR).

Bioorg Med Chem 2018 01 10;26(1):50-64. Epub 2017 Nov 10.

Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019 Sesto Fiorentino (FI), Italy.

In this study, a new series of heterodimers was synthesized. These derivatives are N,N-bis(alkanol)amine aryl esters or N,N-bis(ethoxyethanol)amine aryl esters carrying a methoxylated aryl residue combined with a flavone or chromone moiety. The new compounds were studied to evaluate their P-gp modulating activity on a multidrug-resistant leukemia cell line. Some of the new compounds show a good MDR reversing activity; interestingly this new series of compounds does not comply with the structure-activity relationships (SAR) outlined by previously synthesized analogs carrying different aromatic moieties. In the case of the compounds described in this paper, activity is linked to different features, in particular the characteristics of the spacer, which seem to be critical for the interaction with the pump. This fact indicates that the presence of a flavone or chromone residue influences the SAR of these series of products, and that flexible molecules can find different productive binding modes with the P-gp recognition site. These results support the synthesis of new compounds that might be useful leads for the development of drugs to control P-gp-dependent MDR.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2017.11.016DOI Listing
January 2018

N-alkanol-N-cyclohexanol amine aryl esters: Multidrug resistance (MDR) reversing agents with high potency and efficacy.

Eur J Med Chem 2017 Feb 13;127:586-598. Epub 2017 Jan 13.

Université Paris 13, Sorbonne Paris Cité, Laboratoire CSPBAT, CNRS (UMR 7244), UFR-SMBH, 74 rue Marcel Cachin, 93017 Bobigny, France.

In a continuing search for potent P-gp-dependent multidrug-resistant (MDR) reversers we synthesized and studied a new series of N-alkanol-N-cyclohexanol amine aryl esters characterized by the presence of two linkers with different flexibility: a polymethylene chain of variable length and a cyclohexylic scaffold, that gave origin to two geometrical isomers (cis and trans). The reversal activity of the new compounds was evaluated on the K562/DOX cell line by three tests: pirarubicin uptake modulation, doxorubicin cytotoxicity enhancement (reversal fold, RF) and inhibition of P-gp-mediated rhodamine-123 (Rhd 123) efflux tests. The chemical stability of their ester function was evaluated in the experimental conditions utilized (phosphate buffer solution (PBS), bovine serum and in the presence of K562/DOX cells) and in human plasma. The new series of molecules showed very interesting MDR reversing properties; in particular compound 5b (ELF26B), characterized by trans stereochemistry and a 5-methylene chain, presented the best pharmacological profile and is stable in each tested medium. Compound 5b could be an interesting lead for the development of new potent and efficacious P-gp-dependent MDR modulators.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2017.01.019DOI Listing
February 2017

Development and characterization of an in vitro model of colorectal adenocarcinoma with MDR phenotype.

Cancer Med 2016 06 25;5(6):1279-91. Epub 2016 Mar 25.

Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Viale G. Pieraccini 6, Florence, Italy.

The major cause of failure in cancer chemotherapy is the development of multidrug resistance (MDR), and the characterization of biological factors involved in this response to therapy is particularly needed. A doxorubicin-resistant HCT-8/R clone was selected from sensitive parental cells and characterized analyzing several parameters (cell cycle phase distribution, apoptotic activity, expression, distribution and functionality of the P-gp efflux pump, the response to other chemotherapy agents, its ultrastructural features, invasiveness, and transcriptomic profile). HCT-8/R cells showed a peculiar S phase distribution, characterized by a single pulse of proliferation, resistance to drug-mediated apoptosis, increased expression and functionality of P-gp and overexpression of stem cell markers (CD44 and aldehyde dehydrogenase 1A2). At the ultrastructural level, HCT-8/R presented a greater cell volume and several intracytoplasmic vesicles respect to HCT-8. Moreover, the resistant clone was characterized by cross resistance to other cytotoxic drugs and a greater capacity for migration and invasion, compared to parental cells. Our data reinforce the concept that the MDR phenotype in HCT-8/R cells is multifactorial and involves multiple mechanisms, representing an interesting tool to understand the biological basis of MDR and to test strategies that overcome resistance to chemotherapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cam4.694DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4924386PMC
June 2016

New Dendrimer-Based Nanoparticles Enhance Curcumin Solubility.

Planta Med 2017 Mar 22;83(5):420-425. Epub 2016 Mar 22.

Dipartimento di Chimica, Università degli Studi di Firenze, Sesto Fiorentino, Italy.

Curcumin, the main curcuminoid of the popular Indian spice turmeric, is a potent chemopreventive agent and useful in many different diseases. A major limitation of applicability of curcumin as a health promoting and medicinal agent is its extremely low bioavailability due to efficient first pass metabolism, poor gastrointestinal absorption, rapid elimination, and poor aqueous solubility. In the present study, nanotechnology was selected as a choice approach to enhance the bioavailability of the curcuminis. A new polyamidoamine dendrimer (G0.5) was synthesized, characterized, and tested for cytotoxicity in human breast cancer cells (MCF-7). No cytotoxicity of G0.5 was found in the range between 10 and 3 × 10 M. Consequently, G0.5 was used to prepare spherical nanoparticles of ca. 150 nm, which were loaded with curcumin [molar ratio G0.5/curcumin 1 : 1 (formulation 1) and 1 : 0.5 (formulation 2)]. Remarkably, the occurrence of a single population of nanoparticles having an excellent polydispersity index (< 0.20) was found in both formulations. Formulation 1 was selected to test drug release because it was superior in terms of encapsulation efficiency (62 %) and loading capacity (32 %). The solubility of curcumin was increased ca. 415 and 150 times with respect to the unformulated drug, respectively, for formulation 1 and formulation 2. The release of curcumin from the nanoparticles showed an interesting prolonged and sustained release profile.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0042-103161DOI Listing
March 2017

Enhanced Efficacy of Artemisinin Loaded in Transferrin-Conjugated Liposomes versus Stealth Liposomes against HCT-8 Colon Cancer Cells.

ChemMedChem 2016 08 21;11(16):1745-51. Epub 2016 Mar 21.

Department of Chemistry, University of Florence, via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy.

Artemisinin (ART) is a unique sesquiterpene lactone isolated from Artemisia annua that is well known for antimalarial properties and was recently reported as a promising anticancer drug. The aim of our work was to develop a novel nanocarrier for enhanced ART delivery and activation in cancer tissues, because transferrin receptors are largely expressed in cancer cells and the iron content is higher than in normal cells. ART was loaded in transferrin-conjugated liposomes (ART-L-Tf), and the performance was compared with ART loaded in stealth liposomes (ART-L). All of the liposomes were fully characterized in terms of size, drug-entrapment efficiency, transferrin coupling moieties, and stability. Both cell uptake and cytotoxicity studies of the developed nanocarriers were tested in the HCT-8 cell line, selected among several cell lines because of transferrin receptor overexpression. The results confirmed the enhanced delivery of ART-L-Tf in comparison with ART-L in the targeting of the HCT-8 cell line and an improved cytotoxicity as a result of the presence of iron ions, which resulted in concomitant synergism derived from the increased expression of transferrin receptors on the surface of the tumor cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.201500586DOI Listing
August 2016

Multidrug resistance (MDR) reversers: High activity and efficacy in a series of asymmetrical N,N-bis(alkanol)amine aryl esters.

Eur J Med Chem 2014 Nov 30;87:398-412. Epub 2014 Sep 30.

Dipartimento NEUROFARBA-Sezione di Farmaceutica e Nutraceutica, Università di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, FI, Italy.

As a continuation of our research on potent and efficacious P-gp-dependent multidrug resistance (MDR) reversers, several new N,N-bis(alkanol)amine aryl esters were designed and synthesized, varying the aromatic moieties or the length of the methylenic chain. The new compounds were tested on doxorubicin-resistant erythroleukemia K562 cells (K562/DOX) in the pirarubicin uptake assay, where most of the new compounds were shown to be active. In particular the asymmetrical compounds, characterized by two linkers of different length, generally showed fairly high activities as MDR reversers. Some selected compounds (isomers 15-17) were further studied by evaluating their doxorubicin cytotoxicity enhancement (reversal fold, RF) on the K562/DOX cell line. The results of both pharmacological assays indicate that compounds 16 (GDE6) and 17 (GDE19) could be interesting leads for the development of new P-gp dependent MDR modulators.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2014.09.084DOI Listing
November 2014

Strategy to provide a useful solution to effective delivery of dihydroartemisinin: development, characterization and in vitro studies of liposomal formulations.

Colloids Surf B Biointerfaces 2014 Apr 6;116:121-7. Epub 2014 Jan 6.

Department of Chemistry, University of Florence, via U. Schiff 6, 50019 Sesto Fiorentino, Florence Italy.

Dihydroartemisinin is one of the most potent anticancer artemisinin-like compounds, able to induce cancer cell death by apoptotic pathways. Besides its effectiveness, it is a poorly water soluble drug with low bioavailability and low half-life (34-90 min), therefore, the development of new formulations of dihydroartemisinin to increase bioavailability is in great need. Conventional (P90G and cholesterol) and stealth liposomes (P90G; cholesterol and PE 18:0/18:0 PEG 2000) to deliver dihydroartemisinin to cancer cells were developed for the first time. Both developed formulations show physical characteristics as drug carrier for parental administration and good values of encapsulation efficiency (71% conventional liposomes and 69% stealth liposomes). Physical and chemical stabilities were evaluated under storage condition and in presence of albumin. Cellular uptake efficiency of liposomes was determined by flow cytometry. Higher internalization occurred in the conventional liposomes rather than in the stealth liposomes suggesting that hydrophilic steric barrier of PEG molecules can reduce cellular uptake. Flow cytometry analysis was also used as an alternative technique for rapid size determination of liposomes. Cytotoxicity studies in the MCF-7 cell line confirmed the absence of toxicity in blank formulations suggesting liposomes may be a suitable carrier for delivery of DHA avoiding the use of organic solvents. Cytotoxicity of DHA and of both liposomal formulations was evaluated in the same cell line, confirming a modified release of DHA from vesicles after cellular uptake.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2013.12.019DOI Listing
April 2014

New structure-activity relationship studies in a series of N,N-bis(cyclohexanol)amine aryl esters as potent reversers of P-glycoprotein-mediated multidrug resistance (MDR).

Bioorg Med Chem 2013 Jan 24;21(2):456-65. Epub 2012 Nov 24.

Dipartimento di Scienze Farmaceutiche, Università di Firenze, via Ugo Schiff 6, 50019 Sesto Fiorentino, FI, Italy.

As a continuation of previous research on a new series of potent and efficacious P-gp-dependent multidrug resistant (MDR) reversers with a N,N-bis(cyclohexanol)amine scaffold, we have designed and synthesized several analogs by modulation of the two aromatic moieties linked through ester functions to the N,N-bis(cyclohexanol)amine, aiming to optimize activity and to extend structure-activity relationships (SAR) within the series. This scaffold, when esterified with two different aromatic carboxylic acids, gives origin to four geometric isomers (cis/trans, trans/trans, cis/cis and trans/cis). The new compounds were tested on doxorubicin-resistant erythroleukemia K562 cells (K562/DOX) in the pirarubicin uptake assay. Most of them resulted in being potent modulators of the extrusion pump P-gp, showing potency values ([I](0.5)) in the submicromolar and nanomolar range. Of these, compounds 2b, 2c, 3d, 5a-d and 6d, showed excellent efficacy with a α(max) close to 1. Selected compounds (2d, 3a, 3b, 5a-d) were further studied to evaluate their doxorubicin cytotoxicity potentiation (RF) on doxorubicin-resistant erythroleukemia K562 cells and were found able to enhance significantly doxorubicin cytotoxicity on K562/DOX cells. The results of both pirarubicin uptake and the cytotoxicity assay, indicate that the new compounds of the series are potent P-gp-mediated MDR reversers. They present a structure with a mix of flexible and rigid moieties, a property that seems critical to allow the molecules to choose the most productive of the several binding modes possible in the transporter recognition site. In particular, compounds 5c and 5d, similar to the already reported analogous isomers 1c and 1d,(29) are potent and efficacious modulators of P-gp-dependent MDR and may be promising leads for the development of MDR-reversal drugs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2012.11.019DOI Listing
January 2013

Structure-activity relationships studies in a series of N,N-bis(alkanol)amine aryl esters as P-glycoprotein (Pgp) dependent multidrug resistance (MDR) inhibitors.

J Med Chem 2010 Feb;53(4):1755-62

Dipartimento di Scienze Farmaceutiche, Laboratorio di Progettazione Sintesi e Studio di Eterocicli Bioattivi (HeteroBioLab), Università di Firenze, via Ugo Schiff 6, 50019 Sesto Fiorentino (FI), Italy.

As a continuation of a previous research, a series of N,N-bis(alkanol)amine aryl esters, as Pgp-dependent MDR inhibitors, was designed and synthesized. The aromatic ester portions are suitably modulated, and new aryl rings (Ar(1) and Ar(2)) were combined with trans-3-(3,4,5-trimethoxyphenyl)vinyl, 3,4,5-trimethoxybenzyl and anthracene moieties that were present in the most potent previously studied compounds. The new compounds showed a wide range of potencies and efficacies on doxorubicin-resistant erythroleukemia K562 cells (K562/DOX) in the pirarubicin uptake assay. Selected compounds (5, 6, 8, 9, and 21) were further studied, evaluating their action on doxorubicin cytotoxicity potentiation on K562 cells; they significantly enhanced doxorubicin cytotoxicity on K562/DOX cells, confirming the results obtained with pirarubicin. Compound 9 shows the most promising properties as it was able to nearly completely reverse Pgp-dependent pirarubicin extrusion at nanomolar doses and increased the cytotoxicity of doxorubicin with a reversal fold (RF) of 19.1 at 3 microM dose.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm9016174DOI Listing
February 2010

N,N-bis(cyclohexanol)amine aryl esters: a new class of highly potent transporter-dependent multidrug resistance inhibitors.

J Med Chem 2009 Feb;52(3):807-17

Dipartimento di Scienze Farmaceutiche, Universita di Firenze, via U. Schiff 6, 50019 Sesto Fiorentino (FI), Italy.

A new series of Pgp-dependent MDR inhibitors having a N,N-bis(cyclohexanol)amine scaffold was designed on the basis of the frozen analogue approach. The scaffold chosen gives origin to different geometrical isomers. The new compounds showed a wide range of potencies and efficacies on doxorubicin-resistant erythroleukemia K562 cells in the pirarubicin uptake assay. The most interesting compounds (isomers of 3) were studied further evaluating their action on the ATPase activity present in rat small intestine membrane vesicles and doxorubicin cytotoxicity potentiation on K562 cells. The latter assay was performed also on the isomers of 4. The four isomers of each set present different behavior in each of these tests. Compound 3d shows the most promising properties as it was able to completely reverse Pgp-dependent pirarubicin extrusion at low nanomolar concentration, inhibited ATPase activity at 5 x 10(-9) and increased the cytotoxicity of doxorubicin with a reversal fold (RF) of 36.4 at 3 microM concentration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm8012745DOI Listing
February 2009

Synthesis of new pyrazolo[5,1-c][1,2,4] benzotriazines, pyrazolo[5,1-c]pyrido[4,3-e][1,2,4] triazines and their open analogues as cytotoxic agents in normoxic and hypoxic conditions.

Bioorg Med Chem 2008 Nov 26;16(21):9409-19. Epub 2008 Sep 26.

Dipartimento di Scienze Farmaceutiche, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Polo Scientifico, Sesto Fiorentino, Firenze, Italy.

The synthesis and antitumor activity in normoxic and hypoxic conditions of a series of pyrazolo[5,1-c][1,2,4]benzotriazine and its related analogues are reported. All compounds were tested on human colorectal adenocarcinoma cell line HCT-8 and for compounds 15 and 20, which show to have selective cytotoxicity in hypoxic and in normoxic conditions respectively, ROS production, cell cycle, and DNA fragmentation were measured. This preliminary study encouraged us to consider 15 and 20 as interesting leads for further optimization.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2008.09.055DOI Listing
November 2008

Structural and solution chemistry, antiproliferative effects, and DNA and protein binding properties of a series of dinuclear gold(III) compounds with bipyridyl ligands.

J Med Chem 2006 Sep;49(18):5524-31

Department of Chemistry, University of Florence, Florence, Italy.

A series of six dinuclear gold(III) oxo complexes with bipyridyl ligands, of general formula [Au2(N,N)2(mu-O)2][PF6]2 (Auoxo1-Auoxo6) [where N,N = 2,2'-bipyridine (1), 4,4'-di-tert-butyl- (2), 6-methyl- (3), 6-neopentyl- (4), 6-(2,6-dimethylphenyl)- (5), 6,6'-dimethyl-2,2'-bipyridine (6)], were investigated as potential cytotoxic and anticancer agents, and their antiproliferative properties were evaluated in vitro toward the reference A2780 human ovarian carcinoma cell line. While five compounds manifested moderate cytotoxic properties (with IC50 approximately 10-30 microM), the sixth one (Auoxo6), turned out to be approximately 5-15 times more active against both cell lines and will merit further pharmacological studies. The interactions of Auoxo1 and Auoxo6 with a few model proteins (serum albumin, cytochrome c, ubiquitin) and with calf thymus DNA were analyzed in detail by various spectroscopic methods. Both tested compounds manifested a high and peculiar reactivity toward the mentioned model proteins; specific differences were detected in their reactivity with DNA. The mechanistic implications of these results are discussed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm060436aDOI Listing
September 2006

Mechanisms of cytotoxicity of selected organogold(III) compounds.

J Med Chem 2005 Oct;48(21):6761-5

Department of Pharmacology and Chemistry, University of Florence, Florence, Italy, Department of Chemistry, University of Sassari, Sassari, Italy.

The effects of a few cytotoxic organogold(III) compounds on ovarian A2780 human cancer cells were investigated in comparison to cisplatin and oxaliplatin. The tested compounds produced significant antiproliferative effects and promoted apoptosis to a greater extent than platinum drugs while causing only modest cell cycle modifications. The mechanistic implications of these findings are discussed: mitochondrial pathways are proposed to be directly involved in the apoptotic process in relation to selective inhibition of thioredoxin reductase.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm050493oDOI Listing
October 2005

Cytotoxic activity of 3-nitropyrazolo[5,1-c][1,2,4]benzotriazine derivatives: a new series of anti-proliferative agents.

Anticancer Drugs 2005 Jul;16(6):645-51

Department of Preclinical and Clinical Pharmacology, University of Florence, Italy.

We report the synthesis and biological evaluation of a new series of 3-nitropyrazolo[5,1-c][1,2,4]benzotriazine derivatives (compounds 1-4) bearing appropriate substitutions in positions 7 and/or 8. The objective of this investigation was to study the effects of these substitutions on the cytotoxic activity of four new compounds against established human cancer cell lines (i.e. HT29 and HCT-8, colon carcinoma, MCF7, breast carcinoma, and A549, lung carcinoma cells). The inhibitory effects of compounds 1-4 on cell growth were assessed by the sulforhodamine B assay. Also, the effects of these compounds on cell cycle distribution of human colon carcinoma cells (HCT-8) were analyzed by flow cytometry. 3-Nitropyrazolo[5,1-c][1,2,4]benzotriazine derivatives displayed IC(50) values in the micromolar range on the growth of the four cell lines tested. Cell cycle perturbations induced on HCT-8 cells by study compounds at the IC(50) values consisted prevalently of a slight accumulation of cells in G(0)/G(1) phase and a slight decrease in G(2)/M phase. However, compound 3 induced a marked accumulation of cells into S phase with concomitant decrease in G(0)/G(1) and G(2)/M phases. Cytotoxicity data, compared to those obtained with 3-cyano-8-chloropyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide (compound 5, NSC 683334) and other compounds previously synthesized in our laboratory, demonstrated a similar or even improved cytotoxic potency. Cell cycle perturbations caused by these compounds support the hypothesis that they may act by a direct or an indirect inhibition of DNA synthesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/00001813-200507000-00009DOI Listing
July 2005

Pirenoxine prevents oxidative effects of argon fluoride excimer laser irradiation in rabbit corneas: biochemical, histological and cytofluorimetric evaluations.

J Photochem Photobiol B 2005 Jan;78(1):35-42

Department of Preclinical and Clinical Pharmacology, University of Florence, V.le Pierraccini, 6, Florence, Italy.

The production of reactive oxygen species (ROS) associated with excimer laser irradiation is recognized as a possible cause of corneal haze following photorefractive keratectomy (PRK). Our work was aimed at investigating in vitro the oxidative effects induced by subablative laser fluences and at demonstrating the protective effectiveness of pirenoxine. Comparative trials of subablative fluence on rabbit eyes with or without 10(-5) M pirenoxine were carried out. Superoxide anion (O(2)(-)), conjugated diene (CD), and thiobarbituric acid reagent substance (TBARS) formation were analyzed. Cellular death was evaluated by flow cytometry. Histological examinations were also performed. No appraisable differences in O(2)(-),CD,andTBARS formation were detected soon after irradiation, whereas they all increased following incubation. Pirenoxine inhibited such increases. Cytofluorimetric and histological observations gave coherent results. The experimental data indicate that oxidative and toxic effects are ascribable to ROS avalanches triggered by laser irradiation-induced photodissociation and are inhibited by pirenoxine.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2004.09.005DOI Listing
January 2005

Solution chemistry and cytotoxic properties of novel organogold(III) compounds.

Bioorg Med Chem 2004 Dec;12(23):6039-43

Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.

The solution behaviour of some novel organogold(III) compounds was investigated, and their cytotoxic properties evaluated against a few human tumour cell lines (A2780/S, A2780/R, MCF7, HT29 and A549). Specifically, the following compounds were considered: [Au(bipy(dmb)-H)(2,6-xylidine-H)][PF(6)] (AuXyl) and [Au(bipy(dmb)-H)(p-toluidine-H)][PF(6)] (AuTol) (in which bipy(dmb)=6-(1,1-dimethylbenzyl)-2,2'-bipyridine), [Au(py(dmb)-H)(AcO)(2)] (AuPyAcO) (in which py(dmb)=2-(1,1-dimethylbenzyl)-pyridine) and [Au(pz(Ph)-H)Cl(3)]K (AuPzCl) (in which pz(Ph)=1-phenylpyrazole). The solution chemistry of these compounds, under physiological-like conditions, was investigated through UV-vis absorption and (1)H NMR spectroscopies. Significant cytotoxic effects in vitro were observed in selected cases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2004.09.014DOI Listing
December 2004

Gold(III) complexes with bipyridyl ligands: solution chemistry, cytotoxicity, and DNA binding properties.

J Med Chem 2002 Apr;45(8):1672-7

CIRCMSB, local Unit of Florence, University of Florence, Florence, Italy.

Gold(III) compounds generally exhibit significant cytotoxic effects on cancer cell lines and are of potential interest as antitumor drugs. We report here on the solution chemistry, the cytotoxicity, and the DNA binding properties of two new bipyridyl gold(III) compounds: [Au(bipy)(OH)(2)][PF(6)] (1) and the organometallic compound [Au(bipy(c)-H)(OH)][PF(6)] (2) (bipy(c) = 6-(1,1-dimethylbenzyl)-2,2'-bipyridine). Both compounds are sufficiently soluble, and stable for hours, within a physiological buffer at 37 degrees C; [Au(bipy)(OH)(2)][PF(6)], at variance with [Au(bipy(c)-H)(OH)][PF(6)], is quickly and quantitatively reduced by ascorbate. Both compounds showed relevant cytotoxic effects toward the A2780S, A2780R, and SKOV3 tumor cell lines; lower effects were detected on the CCRF-CEM/S and CCRF-CEM/R lines. In most cases the mechanisms of resistance to CDDP are only marginally effective against these gold(III) complexes. The interactions of [Au(bipy)(OH)(2)][PF(6)] and [Au(bipy(c)-H)(OH)][PF(6)] with calf thymus DNA were investigated in vitro by various techniques to establish whether DNA represents a primary target for these compounds. Addition of saturating amounts of DNA did not affect appreciably the visible spectra of these gold(III) complexes. Some slight modifications of the CD spectra of calf thymus DNA and of the DNA melting parameters were observed; in any case, ultrafiltration experiments showed that binding of these gold(III) complexes to DNA is weak and reversible. The mechanistic implications of these findings are discussed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm010997wDOI Listing
April 2002