Publications by authors named "Manchiryala Sravan Kumar"

5 Publications

  • Page 1 of 1

Vitamin A deficiency increases the oleic acid (C18:1) levels in the kidney of high fructose diet-fed rats.

Indian J Med Res 2019 12;150(6):620-629

Divisions of Lipid Biochemistry, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India.

Background & Objectives: Stearoyl-CoA desaturase 1 (SCD1) is a key lipogenic enzyme responsible for endogenous synthesis of monounsaturated fatty acids (MUFA) and plays a key role in various pathophysiology, including fatty liver diseases. In this experimental study the impact of vitamin A deficiency was assessed on SCD1 regulation in relation to kidney biology, under high fructose (HFr) diet-fed condition in rats.

Methods: Forty male weanling (21 day old) Wistar rats were divided into four groups control, vitamin A-deficient (VAD), HFr, VAD with HFr consisting of eight rats each, except 16 for the VAD group. The groups received one of the following diets: control, VAD, HFr and VAD with HFr for 16 wk, except half of the VAD diet-fed rats were shifted to HFr diet, after eight week period.

Results: Feeding of VAD diet (alone or with HFr) significantly reduced the kidney retinol (0.51, 0.44 μg/g vs. 2.1 μg/g; P < 0.05), while increased oleic (C18:1) and total MUFA levels (23.3, 22.2% and 27.3, 25.4% respectively vs. 14.7 and 16.6%; P < 0.05) without affecting the SCD1, both at protein and mRNA levels, when compared with HFr. Comparable, immunohistological staining for SCD1 was observed in the distal convoluted tubules. Despite an increase in MUFA, morphology, triglyceride content and markers of kidney function were not affected by VAD diet feeding.

Interpretation & Conclusions: Feeding of VAD diet either alone or under HFr condition increased the kidney oleic acid (C18:1) levels and thus total MUFA, which corroborated with elevated SCD1 activity index, without affecting its expression status. However, these changes did not alter the kidney morphology and function. Thus, nutrient-gene regulation in kidney biology seems to be divergent.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4103/ijmr.IJMR_1574_17DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038806PMC
December 2019

High-Fat Diet Elevates Liver Docosahexaenoic Acid Possibly through Over-Expression of Very Long-Chain Fatty Acid Elongase 2 in C57BL/6J Mice.

Int J Vitam Nutr Res 2019 Jul 8;89(1-2):62-72. Epub 2019 Apr 8.

1Lipid Biochemistry Division, National Institute of Nutrition, Jamai Osmania, Hyderabad, India.

The liver is the main site of lipid metabolism and vitamin A storage. Dietary factors are known to affect liver function, thereby leading to metabolic abnormalities. Here, we assessed the impact of long-term feeding of a high-fat diet on hepatic vitamin A status and lipid metabolism. For this purpose, 14 male and 14 female 35-day-old mice (strain C57BL/6J) were each divided into 2 groups of 7 animals and fed either a stock diet or a high-fat (HF) diet for 26 weeks. In addition to increased body weight/weight gain, the HF diet induced hypertriglyceridemia in both (p < 0.01). However, liver triglyceride levels were comparable among groups, which could be partly explained by unaltered expression of various lipogenic pathway proteins such as sterol regulatory element binding protein 1 (SREBP1), fatty acid synthase (FAS), microsomal triglyceride transfer protein (MTTP), and glycerol 3-phosphate acyl transferase (GPAT). On the other hand, hepatic retinol stores increased significantly in both sexes, whereas males displayed elevated circulatory retinol levels. Notably, long-term feeding of a HF diet elevated n-3 polyunsaturated fatty acid (PUFA) and docosahexaenoic acid (DHA, C22:6) levels in the liver (p ≤ 0.001), which is in line with the over-expression of very long-chain fatty acid elongase 2 (ELOVL2) protein in both sexes of mice (p < 0.01). In conclusion, very long-term feeding of a HF diet increased hepatic retinol stores and induced hypertriglyceridemia. However, it had no effect on hepatic triglyceride accumulation, possibly due to increased DHA levels arising from the ELOVL2-mediated elongation pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1024/0300-9831/a000432DOI Listing
July 2019

Carrot Juice Administration Decreases Liver Stearoyl-CoA Desaturase 1 and Improves Docosahexaenoic Acid Levels, but Not Steatosis in High Fructose Diet-Fed Weanling Wistar Rats.

Prev Nutr Food Sci 2016 Sep 30;21(3):171-180. Epub 2016 Sep 30.

Lipid Biochemistry Division, National Institute of Nutrition, Jamai Osmania, Hyderabad 500007, India.

Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases associated with an altered lifestyle, besides genetic factors. The control and management of NAFLD mostly depend on lifestyle modifications, due to the lack of a specific therapeutic approach. In this context, we assessed the effect of carrot juice on the development of high fructose-induced hepatic steatosis. For this purpose, male weanling Wistar rats were divided into 4 groups, fed either a control (Con) or high fructose (HFr) diet of AIN93G composition, with or without carrot juice (CJ) for 8 weeks. At the end of the experimental period, plasma biochemical markers, such as triglycerides, alanine aminotransferase, and β-hydroxy butyrate levels were comparable among the 4 groups. Although, the liver injury marker, aspartate aminotransferase, levels in plasma showed a reduction, hepatic triglycerides levels were not significantly reduced by carrot juice ingestion in the HFr diet-fed rats (HFr-CJ). On the other hand, the key triglyceride synthesis pathway enzyme, hepatic stearoyl-CoA desaturase 1 (SCD1), expression at mRNA level was augmented by carrot juice ingestion, while their protein levels showed a significant reduction, which corroborated with decreased monounsaturated fatty acids (MUFA), particularly palmitoleic (C16:1) and oleic (C18:1) acids. Notably, it also improved the long chain n-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA; C22:6) content of the liver in HFr-CJ. In conclusion, carrot juice ingestion decreased the SCD1-mediated production of MUFA and improved DHA levels in liver, under high fructose diet-fed conditions. However, these changes did not significantly lower the hepatic triglyceride levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3746/pnf.2016.21.3.171DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5063201PMC
September 2016

Expression data on liver metabolic pathway genes and proteins.

Data Brief 2016 Mar 13;6:625-9. Epub 2016 Jan 13.

Lipid Biochemistry Division, National Institute of Nutrition, Jamai Osmania, Hyderabad 500007, India.

Here, we present the expression data on various metabolic pathways of liver with special emphasize on lipid and carbohydrate metabolism and long chain polyunsaturated fatty acid (PUFA) synthesis, both at gene and protein levels. The data were obtained to understand the effect of vitamin A deficiency on the expression status (both gene and protein levels) of some of the key factors involved in lipogenesis, fatty acid oxidation, triglyceride secretion, long chain PUFA, resolvin D1 synthesis, glucose transport and glycogen synthesis of liver, using modern biology tools, such as quantitative real-time PCR (RT-PCR) and immunoblotting techniques. This data article provides the supporting evidence to the article "Vitamin A deficiency suppresses high fructose-induced triglyceride synthesis and elevates resolvin D1 levels" [1] and therefore, these data may be referred back, for comprehensive understanding and interpretations and for future studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dib.2016.01.007DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4735467PMC
March 2016

Vitamin A deficiency suppresses high fructose-induced triglyceride synthesis and elevates resolvin D1 levels.

Biochim Biophys Acta 2016 Mar 18;1861(3):156-65. Epub 2015 Nov 18.

Lipid Biochemistry Division, National Institute of Nutrition, Jamai Osmania, Hyderabad 500007, India. Electronic address:

Background/aims: Vitamin A and its metabolites are known to regulate lipid metabolism. However so far, no study has assessed, whether vitamin A deficiency per se aggravates or attenuates the development of non-alcoholic fatty liver disease (NAFLD). Therefore, here, we tested the impact of vitamin A deficiency on the development of NAFLD.

Methods: Male weanling Wistar rats were fed one of the following diets; control, vitamin A-deficient (VAD), high fructose (HFr) and VAD with HFr (VADHFr) of AIN93G composition, for 16weeks, except half of the VAD diet-fed rats were shifted to HFr diet (VAD(s)HFr), at the end of 8(th) week.

Results: Animals fed on VAD diet with HFr displayed hypotriglyceridemia (33.5mg/dL) with attenuated hepatic triglyceride accumulation (8.2mg/g), compared with HFr diet (89.5mg/dL and 20.6mg/g respectively). These changes could be partly explained by the decreased activity of glycerol 3-phosphate dehydrogenase (GPDH) and the down-regulation of stearoyl CoA desaturase 1 (SCD1), both at gene and protein levels, the key determinants of triglyceride biosynthesis. On the other hand, n-3 long chain polyunsaturated fatty acid, docosahexaenoic acid and its active metabolite; resolvin D1 (RvD1) levels were elevated in the liver and plasma of VAD diet-fed groups, which was negatively associated with triglyceride levels. All these factors confer vitamin A deficiency-mediated protection against the development of hepatic steatosis, which was also evident from the group shifted from VAD to HFr diet.

Conclusions: Vitamin A deficiency attenuates high fructose-induced hepatic steatosis, by regulating triglyceride synthesis, possibly through GPDH, SCD1 and RvD1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2015.11.005DOI Listing
March 2016
-->