Publications by authors named "Mamdouh M El-Maghraby"

3 Publications

  • Page 1 of 1

Clinical, hematological, and biochemical studies on hypozincemia in neonatal calves in Egypt.

Vet World 2021 Feb 3;14(2):314-318. Epub 2021 Feb 3.

Department of Veterinary Medicine, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.

Background And Aim: Zinc has a wide spectrum of biological activities and its deficiency has been related to various dysfunctions. This study aimed to clarify the clinical, hematological, and biochemical changes in Holstein dairy calves with naturally occurring hypozincemia before and after treatment.

Materials And Methods: This study was carried out on 25 Holstein dairy calves <1 month of age in the El-Salhya Dairy Farm, Al-Sharqiya Province, Egypt. Calves were born from apparent healthy dams without any clinical signs of zinc deficiency. They were divided into two groups. The first group (G1) included five clinically healthy calves that were used as controls. The second group (G2) included 20 calves suffering from alopecia and skin lesions. The diseased calves were then treated by oral administration of zinc oxide at the rate of 80 mg/day for 10 successive days and then 20 mg/week for 2 weeks (G3). A total of 90 samples, whole blood and serum samples were collected during the study across all groups. Whole blood was evaluated for complete blood count and serum was used to estimate total protein, albumin, globulin, zinc, calcium, magnesium, phosphorus, and the activity of alkaline phosphatase (ALP) and aspartate aminotransferase.

Results: The diseased calves had macrocytic normochromic anemia. Total leukocytes, neutrophils, and lymphocytes were significantly reduced in the diseased calves than in the control and treated groups. Biochemical analysis of serum revealed a highly significant decrease in the globulin, zinc, and calcium concentrations in the diseased calves than in the control and treated groups. ALP activity was significantly lower in the diseased and treated calves than in control. There were no differences in any other parameters between the groups.

Conclusion: Zinc deficiency naturally occurring in calves caused clinical, hematological, and biochemical alterations such as alopecia, skin abnormalities, and macrocytic normochromic anemia. In addition, zinc deficiency altered the cell-mediated immunity as indicated by leukopenia and lymphopenia. These alterations were improved by oral administration of zinc oxide.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.14202/vetworld.2021.314-318DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7994119PMC
February 2021

High proportion of MERS-CoV shedding dromedaries at slaughterhouse with a potential epidemiological link to human cases, Qatar 2014.

Infect Ecol Epidemiol 2015 15;5:28305. Epub 2015 Jul 15.

Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.

Two of the earliest Middle East respiratory syndrome (MERS) cases were men who had visited the Doha central animal market and adjoining slaughterhouse in Qatar. We show that a high proportion of camels presenting for slaughter in Qatar show evidence for nasal MERS-CoV shedding (62/105). Sequence analysis showed the circulation of at least five different virus strains at these premises, suggesting that this location is a driver of MERS-CoV circulation and a high-risk area for human exposure. No correlation between RNA loads and levels of neutralizing antibodies was observed, suggesting limited immune protection and potential for reinfection despite previous exposure.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4505336PMC
http://dx.doi.org/10.3402/iee.v5.28305DOI Listing
July 2015

Isolation of MERS coronavirus from a dromedary camel, Qatar, 2014.

Emerg Infect Dis 2014 Aug;20(8):1339-42

We obtained the full genome of Middle East respiratory syndrome coronavirus (MERS-CoV) from a camel in Qatar. This virus is highly similar to the human England/Qatar 1 virus isolated in 2012. The MERS-CoV from the camel efficiently replicated in human cells, providing further evidence for the zoonotic potential of MERS-CoV from camels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3201/eid2008.140663DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111206PMC
August 2014