Publications by authors named "Mahmoud Salah Abdullah"

3 Publications

  • Page 1 of 1

Inflammatory Breast Carcinoma: Elevated microRNA miR-181b-5p and Reduced miR-200b-3p, miR-200c-3p, and miR-203a-3p Expression as Potential Biomarkers with Diagnostic Value.

Biomolecules 2020 07 16;10(7). Epub 2020 Jul 16.

Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt.

Inflammatory breast cancer (IBC) is a rare yet aggressive breast cancer variant, associated with a poor prognosis. The major challenge for IBC is misdiagnosis due to the lack of molecular biomarkers. We profiled dysregulated expression of microRNAs (miRNAs) in primary samples of IBC and non-IBC tumors using human breast cancer miRNA PCR array. We discovered that 28 miRNAs were dysregulated (10 were upregulated, while 18 were underexpressed) in IBC vs. non-IBC tumors. We identified 128 hub genes, which are putative targets of the differentially expressed miRNAs and modulate important cancer biological processes. Furthermore, our qPCR analysis independently verified a significantly upregulated expression of miR-181b-5p, whereas a significant downregulation of miR-200b-3p, miR-200c-3p, and miR-203a-3p was detected in IBC tumors. Receiver operating characteristic (ROC) curves implied that the four miRNAs individually had a diagnostic accuracy in discriminating patients with IBC from non-IBC and that miR-203a-3p had the highest diagnostic value with an AUC of 0.821. Interestingly, a combination of miR-181b-5p, miR-200b-3p, and miR-200c-3p robustly improved the diagnostic accuracy, with an area under the curve (AUC) of 0.897. Intriguingly, qPCR revealed that the expression of zinc finger E box-binding homeobox 2 () mRNA, the putative target of miR-200b-3p, miR-200c-3p, and miR-203a-3p, was upregulated in IBC tumors. Overall, this study identified a set of miRNAs serving as potential biomarkers with diagnostic relevance for IBC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/biom10071059DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407124PMC
July 2020

Knockdown of Musashi RNA Binding Proteins Decreases Radioresistance but Enhances Cell Motility and Invasion in Triple-Negative Breast Cancer.

Int J Mol Sci 2020 Mar 21;21(6). Epub 2020 Mar 21.

Department of Radiation Oncology, University Hospital Münster, 48149 Münster, Germany.

The therapeutic potential of Musashi (MSI) RNA-binding proteins, important stemness-associated gene expression regulators, remains insufficiently understood in breast cancer. This study identifies the interplay between MSI protein expression, stem cell characteristics, radioresistance, cell invasiveness and migration. MSI-1, MSI-2 and Notch pathway elements were investigated via quantitative polymerase chain reaction (qPCR) in 19 triple-negative breast cancer samples. Measurements were repeated in MDA-MB-231 cells after MSI-1 and -2 siRNA-mediated double knockdown, with further experiments performed after silencing. Flow cytometry helped quantify expression of CD44 and leukemia inhibitory factor receptor (LIFR), changes in apoptosis and cell cycle progression. Proliferation and irradiation-induced effects were assessed using colony formation assays. Radiation-related proteins were investigated via Western blots. Finally, cell invasion assays and digital holographic microscopy for cell migration were performed. MSI proteins showed strong correlations with Notch pathway elements. knockdown resulted in reduction of stem cell marker expression, cell cycle progression and proliferation, while increasing apoptosis. Cells were radiosensitized as radioresistance-conferring proteins were downregulated. However, -silencing-mediated LIFR downregulation resulted in enhanced cell invasion and migration. We conclude that, while knockdown results in several therapeutically desirable consequences, enhanced invasion and migration need to be counteracted before knockdown advantages can be fully exploited.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms21062169DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139790PMC
March 2020

Tumor microenvironmental plasmacytoid dendritic cells contribute to breast cancer lymph node metastasis via CXCR4/SDF-1 axis.

Breast Cancer Res Treat 2019 Apr 10;174(3):679-691. Epub 2019 Jan 10.

Department of Zoology, Faculty of Science, Cairo University, 12613, Giza, Egypt.

Purpose: Plasmacytoid dendritic cells (PDCs) infiltration into breast cancer tissues is associated with poor prognosis. Also, CXCR4 shows compelling evidences to be exploited by cancer cells to migrate to distant sites. The present study investigated lymph node metastasis in the light of PDCs infiltration and the potential cross talk with CXCR4/SDF-1 chemokine axis.

Methods: We assessed circulating PDCs proportions drained from the axillary tributaries, and the in situ expression of both CD303 and CXCR4 in breast cancer patients with positive lymph nodes (pLN) and negative lymph nodes (nLN) using immunohistochemistry and flow cytometry. We also analyzed the expression of SDF-1 in lymph nodes of pLN and nLN patients. We studied the effect of the secretome of PDCs of pLN and nLN patients on the expression of CXCR4 and activation of NF-κB in human breast cancer cell lines SKBR3 and MCF-7. TNF-α mRNA expression level in PDCs from both groups was determined by qPCR.

Results: Our findings indicate increased infiltration of PDCs in breast cancer tissues of pLN patients than nLN patients, which correlates with CXCR4 cells percentage. Interestingly, SDF-1 is highly immunostained in lymph nodes of pLN patients compared to nLN patients. Our in vitro experiments demonstrate an upregulation of NF-κB expression and CXCR4 cells upon stimulation with PDCs secretome of pLN patients than those of nLN patients. Also, PDCs isolated from pLN patients exhibited a higher TNF-α mRNA expression than nLN patients. Treatment of MCF-7 cell lines with TNF-α significantly upregulates CXCR4 expression.

Conclusions: Our findings suggest a potential role for microenvironmental PDCs in breast cancer lymph node metastasis via CXCR4/SDF-1 axis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10549-019-05129-8DOI Listing
April 2019