Publications by authors named "Magdalena Heindorf"

2 Publications

  • Page 1 of 1

Relatedness of wildlife and livestock avian isolates of the nosocomial pathogen Acinetobacter baumannii to lineages spread in hospitals worldwide.

Environ Microbiol 2017 10 9;19(10):4349-4364. Epub 2017 Oct 9.

Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana Street 1, 65-561 Zielona Góra, Poland.

The natural habitats and potential reservoirs of the nosocomial pathogen Acinetobacter baumannii are poorly defined. Here, we put forth and tested the hypothesis of avian reservoirs of A. baumannii. We screened tracheal and rectal swab samples from livestock (chicken, geese) and wild birds (white stork nestlings) and isolated A. baumannii from 3% of sampled chicken (n = 220), 8% of geese (n = 40) and 25% of white stork nestlings (n = 661). Virulence of selected avian A. baumannii isolates was comparable to that of clinical isolates in the Galleria mellonella infection model. Whole genome sequencing revealed the close relationship of an antibiotic-susceptible chicken isolate from Germany with a multidrug-resistant human clinical isolate from China and additional linkages between livestock isolates and human clinical isolates related to international clonal lineages. Moreover, we identified stork isolates related to human clinical isolates from the United States. Multilocus sequence typing disclosed further kinship between avian and human isolates. Avian isolates do not form a distinct clade within the phylogeny of A. baumannii, instead they diverge into different lineages. Further, we provide evidence that A. baumannii is constantly present in the habitats occupied by storks. Collectively, our study suggests A. baumannii could be a zoonotic organism that may disseminate into livestock.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.13931DOI Listing
October 2017

Impact of Acinetobacter baumannii superoxide dismutase on motility, virulence, oxidative stress resistance and susceptibility to antibiotics.

PLoS One 2014 7;9(7):e101033. Epub 2014 Jul 7.

Robert Koch-Institute, Wernigerode Branch, Wernigerode, Germany.

Acinetobacter baumannii is a Gram-negative bacterium appearing as an opportunistic pathogen in hospital settings. Superoxide dismutase (SOD) contributes to virulence in several pathogenic bacteria by detoxifying reactive oxygen species released in the course of host defense reactions. However, the biological role of SODs in A. baumannii has not yet been elucidated. Here, we inactivated in A. baumannii ATCC 17978 gene A1S_2343, encoding a putative SOD of the Fe-Mn type by transposon insertion, resulting in mutant ATCC 17978 sod2343::Km. The mutation was also introduced in two naturally competent A. baumannii isolates by transformation with chromosomal DNA derived from mutant ATCC 17978 sod2343::Km. We demonstrate that inactivation of sod2343 leads to significant motility defects in all three A. baumannii strains. The mutant strains were more susceptible to oxidative stress compared to their parental strains. Susceptibility to colistin and tetracycline was increased in all mutant strains while susceptibility of the mutants to gentamicin, levofloxacin and imipenem was strain-dependent. In the Galleria mellonella infection model the mutant strains were significantly attenuated. In conclusion, sod2343 plays an important role in motility, resistance to oxidative stress, susceptibility to antibiotics and virulence in A. baumannii.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0101033PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4085030PMC
February 2015