Publications by authors named "Maedeh Sherafati"

2 Publications

  • Page 1 of 1

Quinazolinone-dihydropyrano[3,2-b]pyran hybrids as new α-glucosidase inhibitors: Design, synthesis, enzymatic inhibition, docking study and prediction of pharmacokinetic.

Bioorg Chem 2021 Apr 8;109:104703. Epub 2021 Feb 8.

Nano Alvand Company, Avicenna Tech Park, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:

A series of new quinazolinone-dihydropyrano[3,2-b]pyran derivatives 10A-L were synthesized by simple chemical reactions and were investigated for inhibitory activities against α-glucosidase and α-amylase. New synthesized compounds showed high α-glucosidase inhibition effects in comparison to the standard drug acarbose and were inactive against α-amylase. Among them, the most potent compound was compound 10L (IC value = 40.1 ± 0.6 µM) with inhibitory activity around 18.75-fold more than acarboase (IC value = 750.0 ± 12.5 µM). This compound was a competitive inhibitor into α-glucosidase. Our obtained experimental results were confirmed by docking studies. Furthermore, the cytotoxicity of the most potent compounds 10L, 10G, and 10N against normal fibroblast cells and in silico druglikeness, ADME, and toxicity prediction of these compounds were also evaluated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2021.104703DOI Listing
April 2021

Design, synthesis, characterization, enzymatic inhibition evaluations, and docking study of novel quinazolinone derivatives.

Int J Biol Macromol 2021 Feb 19;170:1-12. Epub 2020 Dec 19.

Department of Chemistry, Faculty of Sciences, Ataturk University, 25240, Erzurum, Turkey.

In this study, novel quinazolinone derivatives 7a-n were synthesized and evaluated against metabolic enzymes including α-glycosidase, acetylcholinesterase, butyrylcholinesterase, human carbonic anhydrase I, and II. These compounds exhibited high inhibitory activities in comparison to used standard inhibitors with K values in the range of 19.28-135.88 nM for α-glycosidase (K value for standard inhibitor = 187.71 nM), 0.68-23.01 nM for acetylcholinesterase (K value for standard inhibitor = 53.31 nM), 1.01-29.56 nM for butyrylcholinesterase (K value for standard inhibitor = 58.16 nM), 10.25-126.05 nM for human carbonic anhydrase I (K value for standard inhibitor = 248.18 nM), and 13.46-178.35 nM for human carbonic anhydrase II (K value for standard inhibitor = 323.72). Furthermore, the most potent compounds against each enzyme were selected in order to evaluate interaction modes of these compounds in the active site of the target enzyme. Cytotoxicity assay of the title compounds 7a-n against cancer cell lines MCF-7 and LNCaP demonstrated that these compounds do not show significant cytotoxic effects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.12.121DOI Listing
February 2021