Publications by authors named "Madhab Chandra Manna"

2 Publications

  • Page 1 of 1

In situ decomposition of crop residues using lignocellulolytic microbial consortia: a viable alternative to residue burning.

Environ Sci Pollut Res Int 2021 Feb 24. Epub 2021 Feb 24.

ICAR-Indian Institute of Soil Science, Bhopal, 462038, India.

Open field burning of crop residue causes severe air pollution and greenhouse gas emission contributing to global warming. In order to seek an alternative, the current study was initiated to explore the prospective of lignocellulolytic microbes to expedite in situ decomposition of crop residues. Field trials on farmers' field were conducted in the state of Haryana and Maharashtra, to target the burning of rice and wheat residue and sugarcane trash, respectively. A comparative study among crop residue removal (CRR), crop residue burning (CRB) and in situ decomposition of crop residues (IND) revealed that IND of rice and wheat residues took 30 days whereas IND of sugarcane trash took 45 days. The decomposition status was assessed by determining the initial and final lignin to cellulose ratio which increased significantly from 0.23 to 0.25, 0.21 to 0.23 and 0.24 to 0.27 for rice, wheat residues and sugarcane trash, respectively. No yield loss was noticed in IND for both rice-wheat system and sugarcane-based system; rather IND showed relatively better crop yield as well as soil health parameters than CRB and CRR. Furthermore, the environmental impact assessment of residue burning indicated a substantial loss of nutrients (28-31, 23-25 and 51-77 kg ha of N+PO+KO for rice, wheat and sugarcane residue) as well as the emission of pollutants to the atmosphere. However, more field trials, as well as refinement of the technology, are warranted to validate and establish the positive potential of in situ decomposition of crop residue to make it a successful solution against the crop residue burning.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-12611-8DOI Listing
February 2021

Carbon sequestration value of biosolids applied to soil: A global meta-analysis.

J Environ Manage 2021 Apr 30;284:112008. Epub 2021 Jan 30.

Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5501, United States.

Biosolids produced at wastewater treatment facilities are extensively used in agricultural land and degraded mine sites to improve soil health and soil organic carbon (SOC) stocks. Many studies have reported increases in SOC due to application of biosolids to such sites. However, lack of a comprehensive quantification on overall trends and changes of magnitude in SOC remains. Here, we performed a meta-analysis to identify drivers with a relationship with SOC stocks. A meta-regression of 297 treatments found four variables with a relationship with SOC stocks: cumulative biosolids carbon (C) input rate, time after application, soil depth and type of biosolids. The cumulative biosolids C input rate was the most influencing driver. The highest mean difference for SOC% of 3.3 was observed at 0-15 cm soil depth for a cumulative C input of 100 Mg ha at one year after biosolids application. Although years after biosolids application demonstrated a negative relationship with SOC stocks, mineralization of C in biosolids-applied soils is slow, as indicated with the SOC% decrease from 4.6 to 2.8 at 0-15 cm soil depth over five years of 100 Mg ha biosolids C input. Soil depth illustrated a strong negative effect with SOC stocks decreasing by 2.7% at 0-15 cm soil depth at a cumulative biosolids C input of 100 Mg ha over a year. Overall, our model estimated an effect of 2.8 SOC% change, indicating the application of biosolids as a viable strategy for soil C sequestration on a global scale.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.112008DOI Listing
April 2021
-->