Publications by authors named "Maayan Barnea-Zohar"

3 Publications

  • Page 1 of 1

Sorting Nexin 10 as a Key Regulator of Membrane Trafficking in Bone-Resorbing Osteoclasts: Lessons Learned From Osteopetrosis.

Front Cell Dev Biol 2021 20;9:671210. Epub 2021 May 20.

Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.

Bone homeostasis is a complex, multi-step process, which is based primarily on a tightly orchestrated interplay between bone formation and bone resorption that is executed by osteoblasts and osteoclasts (OCLs), respectively. The essential physiological balance between these cells is maintained and controlled at multiple levels, ranging from regulated gene expression to endocrine signals, yet the underlying cellular and molecular mechanisms are still poorly understood. One approach for deciphering the mechanisms that regulate bone homeostasis is the characterization of relevant pathological states in which this balance is disturbed. In this article we describe one such "error of nature," namely the development of acute recessive osteopetrosis (ARO) in humans that is caused by mutations in sorting nexin 10 (SNX10) that affect OCL functioning. We hypothesize here that, by virtue of its specific roles in vesicular trafficking, SNX10 serves as a key selective regulator of the composition of diverse membrane compartments in OCLs, thereby affecting critical processes in the sequence of events that link the plasma membrane with formation of the ruffled border and with extracellular acidification. As a result, SNX10 determines multiple features of these cells either directly or, as in regulation of cell-cell fusion, indirectly. This hypothesis is further supported by the similarities between the cellular defects observed in OCLs form various models of ARO, induced by mutations in SNX10 and in other genes, which suggest that mutations in the known ARO-associated genes act by disrupting the same plasma membrane-to-ruffled border axis, albeit to different degrees. In this article, we describe the population genetics and spread of the original arginine-to-glutamine mutation at position 51 (R51Q) in SNX10 in the Palestinian community. We further review recent studies, conducted in animal and cellular model systems, that highlight the essential roles of SNX10 in critical membrane functions in OCLs, and discuss possible future research directions that are needed for challenging or substantiating our hypothesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fcell.2021.671210DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8173195PMC
May 2021

An SNX10-dependent mechanism downregulates fusion between mature osteoclasts.

J Cell Sci 2021 May 11;134(9). Epub 2021 May 11.

Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel.

Homozygosity for the R51Q mutation in sorting nexin 10 (SNX10) inactivates osteoclasts (OCLs) and induces autosomal recessive osteopetrosis in humans and in mice. We show here that the fusion of wild-type murine monocytes to form OCLs is highly regulated, and that its extent is limited by blocking fusion between mature OCLs. In contrast, monocytes from homozygous R51Q SNX10 mice fuse uncontrollably, forming giant dysfunctional OCLs that can become 10- to 100-fold larger than their wild-type counterparts. Furthermore, mutant OCLs display reduced endocytotic activity, suggesting that their deregulated fusion is due to alterations in membrane homeostasis caused by loss of SNX10 function. This is supported by the finding that the R51Q SNX10 protein is unstable and exhibits altered lipid-binding properties, and is consistent with a key role for SNX10 in vesicular trafficking. We propose that OCL size and functionality are regulated by a cell-autonomous SNX10-dependent mechanism that downregulates fusion between mature OCLs. The R51Q mutation abolishes this regulatory activity, leading to excessive fusion, loss of bone resorption capacity and, consequently, to an osteopetrotic phenotype in vivo. This article has an associated First Person interview with the joint first authors of the paper.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.254979DOI Listing
May 2021

Massive osteopetrosis caused by non-functional osteoclasts in R51Q SNX10 mutant mice.

Bone 2020 07 8;136:115360. Epub 2020 Apr 8.

Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel. Electronic address:

The R51Q mutation in sorting nexin 10 (SNX10) was shown to cause a lethal genetic disease in humans, namely autosomal recessive osteopetrosis (ARO). We describe here the first R51Q SNX10 knock-in mouse model and show that mice homozygous for this mutation exhibit massive, early-onset, and widespread osteopetrosis. The mutant mice exhibit multiple additional characteristics of the corresponding human disease, including stunted growth, failure to thrive, missing or impacted teeth, occasional osteomyelitis, and a significantly-reduced lifespan. Osteopetrosis in this model is the result of osteoclast inactivity that, in turn, is caused by absence of ruffled borders in the mutant osteoclasts and by their inability to secrete protons. These results confirm that the R51Q mutation in SNX10 is a causative factor in ARO and provide a model system for studying this rare disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2020.115360DOI Listing
July 2020