Publications by authors named "Maarten J M Christenhusz"

3 Publications

  • Page 1 of 1

Biogeography and genome size evolution of the oldest extant vascular plant genus, Equisetum (Equisetaceae).

Ann Bot 2021 Apr;127(5):681-695

Royal Botanic Gardens, Kew, Richmond, UK.

Background And Aims: Extant plant groups with a long fossil history are key elements in understanding vascular plant evolution. Horsetails (Equisetum, Equisetaceae) have a nearly continuous fossil record dating back to the Carboniferous, but their phylogenetic and biogeographic patterns are still poorly understood. We use here the most extensive phylogenetic analysis to date as a framework to evaluate their age, biogeography and genome size evolution.

Methods: DNA sequences of four plastid loci were used to estimate divergence times and investigate the biogeographic history of all extant species of Equisetum. Flow cytometry was used to study genome size evolution against the framework of phylogenetic relationships in Equisetum.

Key Results: On a well-supported phylogenetic tree including all extant Equisetum species, a molecular clock calibrated with multiple fossils places the node at which the outgroup and Equisetum diverged at 343 Mya (Early Carboniferous), with the first major split among extant species occurring 170 Mya (Middle Jurassic). These dates are older than those reported in some other recent molecular clock studies but are largely in agreement with a timeline established by fossil appearance in the geological record. Representatives of evergreen subgenus Hippochaete have much larger genome sizes than those of deciduous subgenus Equisetum, despite their shared conserved chromosome number. Subgenus Paramochaete has an intermediate genome size and maintains the same number of chromosomes.

Conclusions: The first divergences among extant members of the genus coincided with the break-up of Pangaea and the resulting more humid, warmer climate. Subsequent tectonic activity most likely involved vicariance events that led to species divergences combined with some more recent, long-distance dispersal events. We hypothesize that differences in genome size between subgenera may be related to the number of sperm flagellae.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/aob/mcab005DOI Listing
April 2021

Plastid phylogenomic insights into the evolution of Caryophyllales.

Mol Phylogenet Evol 2019 05 5;134:74-86. Epub 2019 Feb 5.

Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China. Electronic address:

The Caryophyllales includes 40 families and 12,500 species, representing a large and diverse clade of angiosperms. Collectively, members of the clade grow on all continents and in all terrestrial biomes and often occupy extreme habitats (e.g., xeric, salty). The order is characterized by many taxa with unusual adaptations including carnivory, halophytism, and multiple origins of C photosynthesis. However, deep phylogenetic relationships within the order have long been problematic due to putative rapid divergence. To resolve the deep-level relationships of Caryophyllales, we performed phylogenomic analyses of all 40 families of Caryophyllales. We time-calibrated the molecular phylogeny of this clade, and evaluated putative correlations among plastid structural changes and rates of molecular substitution. We recovered a well-resolved and well-supported phylogeny of the Caryophyllales that was largely congruent with previous estimates of this order. Our results provide improved support for the phylogenetic position of several key families within this clade. The crown age of Caryophyllales was estimated at ca. 114.4 million years ago (Ma), with periods of rapid divergence in the mid-Cretaceous. A strong, positive correlation between nucleotide substitution rate and plastid structural changes was detected. Our study highlights the importance of broad taxon sampling in phylogenomic inference and provides a firm basis for future investigations of molecular, morphological, and ecophysiological evolution in Caryophyllales.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ympev.2018.12.023DOI Listing
May 2019

Trends and concepts in fern classification.

Ann Bot 2014 Mar 13;113(4):571-94. Epub 2014 Feb 13.

Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond TW9 3DS, UK.

Background And Aims: Throughout the history of fern classification, familial and generic concepts have been highly labile. Many classifications and evolutionary schemes have been proposed during the last two centuries, reflecting different interpretations of the available evidence. Knowledge of fern structure and life histories has increased through time, providing more evidence on which to base ideas of possible relationships, and classification has changed accordingly. This paper reviews previous classifications of ferns and presents ideas on how to achieve a more stable consensus.

Scope: An historical overview is provided from the first to the most recent fern classifications, from which conclusions are drawn on past changes and future trends. The problematic concept of family in ferns is discussed, with a particular focus on how this has changed over time. The history of molecular studies and the most recent findings are also presented.

Key Results: Fern classification generally shows a trend from highly artificial, based on an interpretation of a few extrinsic characters, via natural classifications derived from a multitude of intrinsic characters, towards more evolutionary circumscriptions of groups that do not in general align well with the distribution of these previously used characters. It also shows a progression from a few broad family concepts to systems that recognized many more narrowly and highly controversially circumscribed families; currently, the number of families recognized is stabilizing somewhere between these extremes. Placement of many genera was uncertain until the arrival of molecular phylogenetics, which has rapidly been improving our understanding of fern relationships. As a collective category, the so-called 'fern allies' (e.g. Lycopodiales, Psilotaceae, Equisetaceae) were unsurprisingly found to be polyphyletic, and the term should be abandoned. Lycopodiaceae, Selaginellaceae and Isoëtaceae form a clade (the lycopods) that is sister to all other vascular plants, whereas the whisk ferns (Psilotaceae), often included in the lycopods or believed to be associated with the first vascular plants, are sister to Ophioglossaceae and thus belong to the fern clade. The horsetails (Equisetaceae) are also members of the fern clade (sometimes inappropriately called 'monilophytes'), but, within that clade, their placement is still uncertain. Leptosporangiate ferns are better understood, although deep relationships within this group are still unresolved. Earlier, almost all leptosporangiate ferns were placed in a single family (Polypodiaceae or Dennstaedtiaceae), but these families have been redefined to narrower more natural entities.

Conclusions: Concluding this paper, a classification is presented based on our current understanding of relationships of fern and lycopod clades. Major changes in our understanding of these families are highlighted, illustrating issues of classification in relation to convergent evolution and false homologies. Problems with the current classification and groups that still need study are pointed out. A summary phylogenetic tree is also presented. A new classification in which Aspleniaceae, Cyatheaceae, Polypodiaceae and Schizaeaceae are expanded in comparison with the most recent classifications is presented, which is a modification of those proposed by Smith et al. (2006, 2008) and Christenhusz et al. (2011). These classifications are now finding a wider acceptance and use, and even though a few amendments are made based on recently published results from molecular analyses, we have aimed for a stable family and generic classification of ferns.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/aob/mct299DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3936591PMC
March 2014