Publications by authors named "M Raquel Aires-Barros"

95 Publications

Microfluidics as a high-throughput solution for chromatographic process development - The complexity of multimodal chromatography used as a proof of concept.

J Chromatogr A 2021 Nov 8;1658:462618. Epub 2021 Oct 8.

iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal. Electronic address:

High-throughput technologies are fundamental to expedite the implementation of novel purification platforms. The possibility of performing process development within short periods of time while saving consumables and biological material are prime features for any high-throughput screening device. In this work, a microfluidic device is evaluated as high-throughput solution for a complete study of chromatographic operation conditions on ten different multimodal resins. The potential of this class of purification solutions is generally hindered by its complexity. Taking this into consideration, the microfluidic platform was herein applied and assessed as a tool for high-throughput applications. The commercially available multimodal ligands were studied for the binding of three antibody-based biomolecules (polyclonal mixture of whole antibodies, Fab and Fc fragments) at different pH and salt conditions, in a total of 450 experiments. The results obtained with the microfluidic device were comparable to a standard 96-well filtering microplate high-throughput tool. Additionally, five of the ten multimodal ligands tested were packed into a bench-scale column to perform a final validation of the microfluidic results obtained. All the data acquired in this work using different screening protocols corroborate each other, showing that microfluidic chromatography is a valuable tool for the fast implementation of a new purification step, particularly, if the goal is to narrow the downstream possibilities by being a first point of decision.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2021.462618DOI Listing
November 2021

Microfluidic platform for rapid screening of bacterial cell lysis.

J Chromatogr A 2020 Jan 10;1610:460539. Epub 2019 Sep 10.

IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal. Electronic address:

Over the past decade significant progress has been found in the upstream production processes, shifting the main bottlenecks in current manufacturing platforms for biopharmaceuticals towards the downstream processing. Challenges in the purification process include reducing the production costs, developing robust and efficient purification processes as well as integrating both upstream and downstream processes. Microfluidic technologies have recently emerged as effective tools for expediting bioprocess design in a cost-effective manner, since a large number of variables can be evaluated in a small time frame, using reduced volumes and manpower. Their modularity also allows to integrate different unit operations into a single chip, and consequently to evaluate the effect of each stage on the overall process efficiency. This paper describes the development of a diffusion-based microfluidic device for the rapid screening of continuous chemical lysis conditions. The release of a recombinant green fluorescent protein (GFP) expressed in Escherichia coli (E. coli) was used as model system due to the simple evaluation of cell growth and product concentration by fluorescence. The concept can be further applied to any biopharmaceutical production platform. The microfluidic device was successfully used to test the lytic effect of both enzymatic and chemical lysis solutions, with lysis efficiency of about 60% and close to 100%, respectively, achieved. The microfluidic technology also demonstrated the ability to detect potential process issues, such as the increased viscosity related with the rapid release of genomic material, that can arise for specific lysis conditions and hinder the performance of a bioprocess. Finally, given the continuous operation of the lysis chip, the microfluidic technology has the potential to be integrated with other microfluidic modules in order to model a fully continuous biomanufacturing process on a chip.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2019.460539DOI Listing
January 2020

Mobile-Phase Modulators as Salt Tolerance Enhancers in Phenylboronate Chromatography: Thermodynamic Evaluation of the Mechanisms Underlying the Adsorption of Monoclonal Antibodies.

Biotechnol J 2019 Oct 13;14(10):e1800586. Epub 2019 Aug 13.

CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal.

Phenylboronate chromatography has been employed for bioseparation applications though details concerning the mechanisms of interaction between the ligand and macromolecules remain widely unknown. Here, the phenomena underlying the adsorption of an anti-human interleukin-8 (anti-IL8) monoclonal antibody (mAb) onto an m-aminophenylboronic acid (m-APBA) ligand in the presence of different mobile-phase modulators (NaF/MgCl /(NH ) SO ) and under different pH values (7.5/8.5/9.0) is investigated. Flow microcalorimetry (FMC) is applied to measure instantaneous heat energy transfer, providing insights about the role of specific and nonspecific interactions involved in the adsorptive process. Results show that the adsorption of anti-IL8 mAb to m-APBA is enthalpically driven, corroborating the presence of the reversible esterification reaction between boronic acid or boronates and cis-diol-containing molecules. Nevertheless, for all mobile-phase modulators studied, changes in thermogram profiles are observed as well as reductions in the net heat of adsorption when increasing the pH. Overall, FMC and parallel chromatographic experiments data suggest that ligand salt tolerance could be enhanced using mobile-phase modulators, with all salts studied promoting the specific cis-diol interactions and reducing nonspecific interactions. The last feature is more noticeable at pH values above ligand's pK , mainly due to the ability of NaF and (NH ) SO to diminish electrostatic interactions when compared to the commonly used NaCl.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/biot.201800586DOI Listing
October 2019

Optimizing the Performance of Chromatographic Separations Using Microfluidics: Multiplexed and Quantitative Screening of Ligands and Target Molecules.

Biotechnol J 2019 Oct 23;14(10):e1800593. Epub 2019 Jul 23.

IBB - Institute for Bioengineering and Biosciences Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001, Lisbon, Portugal.

The optimization of chromatography ligands for the purification of biopharmaceuticals is highly demanded to meet the needs of the pharmaceutical industry. In the case of monoclonal antibodies (mAbs), synthetic ligands comprising multiple types of interactions (multimodal) provide process and economic advantages compared to protein-based affinity ligands. However, optimizing the operation window of these ligands requires the development of effective high-throughput screening platforms. Here, a novel microfluidics-based methodology to perform rapid and multiplexed screening of various multimodal ligands relative to their ability to bind different target molecules is demonstrated. The microfluidic structure comprises three individual chambers (≈8 nL each) packed with different types of chromatography beads in series with the feed flow. An artificial mixture composed of immunoglobulin G (IgG) and bovine serum albumin, labeled with different thiol-reactive neutral fluorescent dyes, is used as a model to quantitatively optimize the performance (yield and purity) of the separation. This approach can potentially be used as a predictive analytical tool in the context of mAb purification, allowing low consumption of molecules and providing results in <3 min. Furthermore, this versatile approach can potentially be extended not only with respect to the number of different resins and target molecules, but also for parallel analysis of multiple conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/biot.201800593DOI Listing
October 2019

Minimizing the Influence of Fluorescent Tags on IgG Partition in PEG-Salt Aqueous Two-Phase Systems for Rapid Screening Applications.

Biotechnol J 2019 Aug 17;14(8):e1800640. Epub 2019 May 17.

IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.

Aqueous two-phase extraction (ATPE) has been showing significant potential in the biopharmaceutical industry, allowing the selective separation of high-value proteins directly from unclarified cell culture supernatants. In this context, effective high-throughput screening tools are critical to perform a rapid empirical optimization of operating conditions. In particular, microfluidic ATPE screening devices, coupled with fluorescence microscopy to continuously monitor the partition of fluorophore-labeled proteins, have been recently demonstrated to provide short diffusion distances and rapid partition, using minimal reagent volumes. Nevertheless, the currently overlooked influence of the labeling procedure on partition must be carefully evaluated to validate the extrapolation of results to the unlabeled molecule. Here, three fluorophores with different global charge and reactivity selected to label immunoglobulin G (IgG) at degrees of labeling (DoL) ranging from 0.5 to 7.6. Labeling with BODIPY FL maleimide (DoL = 0.5), combined with tris(2-carboxyethyl) phosphine (TCEP) to generate free thiol groups, is the most promising strategy to minimize the influence of the fluorophore on partition. In particular, the partition coefficient (K ) measured in polyethylene glycol (PEG) 3350-phosphate systems with and without the addition of NaCl using microtubes (batch) or microfluidic devices (continuous) is comparable to those quantified for the native protein.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/biot.201800640DOI Listing
August 2019
-->