Publications by authors named "Mélia Magnen"

11 Publications

  • Page 1 of 1

Global absence and targeting of protective immune states in severe COVID-19.

Nature 2021 03 25;591(7848):124-130. Epub 2021 Jan 25.

Department of Pathology, University of California San Francisco, San Francisco, CA, USA.

Although infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has pleiotropic and systemic effects in some individuals, many others experience milder symptoms. Here, to gain a more comprehensive understanding of the distinction between severe and mild phenotypes in the pathology of coronavirus disease 2019 (COVID-19) and its origins, we performed a whole-blood-preserving single-cell analysis protocol to integrate contributions from all major immune cell types of the blood-including neutrophils, monocytes, platelets, lymphocytes and the contents of the serum. Patients with mild COVID-19 exhibit a coordinated pattern of expression of interferon-stimulated genes (ISGs) across every cell population, whereas these ISG-expressing cells are systemically absent in patients with severe disease. Paradoxically, individuals with severe COVID-19 produce very high titres of anti-SARS-CoV-2 antibodies and have a lower viral load compared to individuals with mild disease. Examination of the serum from patients with severe COVID-19 shows that these patients uniquely produce antibodies that functionally block the production of the ISG-expressing cells associated with mild disease, by activating conserved signalling circuits that dampen cellular responses to interferons. Overzealous antibody responses pit the immune system against itself in many patients with COVID-19, and perhaps also in individuals with other viral infections. Our findings reveal potential targets for immunotherapies in patients with severe COVID-19 to re-engage viral defence.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03234-7DOI Listing
March 2021

Update on animal models for COVID-19 research.

Br J Pharmacol 2020 12 2;177(24):5679-5681. Epub 2020 Nov 2.

Sackler Institute of Pulmonary Pharmacology, King's College London, London, UK.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/bph.15266DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7707085PMC
December 2020

Global Absence and Targeting of Protective Immune States in Severe COVID-19.

bioRxiv 2020 Oct 29. Epub 2020 Oct 29.

While SARS-CoV-2 infection has pleiotropic and systemic effects in some patients, many others experience milder symptoms. We sought a holistic understanding of the severe/mild distinction in COVID-19 pathology, and its origins. We performed a whole-blood preserving single-cell analysis protocol to integrate contributions from all major cell types including neutrophils, monocytes, platelets, lymphocytes and the contents of serum. Patients with mild COVID-19 disease display a coordinated pattern of interferon-stimulated gene (ISG) expression across every cell population and these cells are systemically absent in patients with severe disease. Severe COVID-19 patients also paradoxically produce very high anti-SARS-CoV-2 antibody titers and have lower viral load as compared to mild disease. Examination of the serum from severe patients demonstrates that they uniquely produce antibodies with multiple patterns of specificity against interferon-stimulated cells and that those antibodies functionally block the production of the mild disease-associated ISG-expressing cells. Overzealous and auto-directed antibody responses pit the immune system against itself in many COVID-19 patients and this defines targets for immunotherapies to allow immune systems to provide viral defense.

One Sentence Summary: In severe COVID-19 patients, the immune system fails to generate cells that define mild disease; antibodies in their serum actively prevents the successful production of those cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2020.10.28.359935DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7605559PMC
October 2020

Global Absence and Targeting of Protective Immune States in Severe COVID-19.

Res Sq 2020 Oct 28. Epub 2020 Oct 28.

Department of Pathology, San Francisco, 513 Parnassus Ave, HSW512, San Francisco, CA 94143-0511, USA.

While SARS-CoV-2 infection has pleiotropic and systemic effects in some patients, many others experience milder symptoms. We sought a holistic understanding of the severe/mild distinction in COVID-19 pathology, and its origins. We performed a wholeblood preserving single-cell analysis protocol to integrate contributions from all major cell types including neutrophils, monocytes, platelets, lymphocytes and the contents of serum. Patients with mild COVID-19 disease display a coordinated pattern of interferonstimulated gene (ISG) expression across every cell population and these cells are systemically absent in patients with severe disease. Severe COVID-19 patients also paradoxically produce very high anti-SARS-CoV-2 antibody titers and have lower viral load as compared to mild disease. Examination of the serum from severe patients demonstrates that they uniquely produce antibodies with multiple patterns of specificity against interferon-stimulated cells and that those antibodies functionally block the production of the mild disease-associated ISG-expressing cells. Overzealous and autodirected antibody responses pit the immune system against itself in many COVID-19 patients and this defines targets for immunotherapies to allow immune systems to provide viral defense.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.21203/rs.3.rs-97042/v1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7605560PMC
October 2020

Complement activation on endothelium initiates antibody-mediated acute lung injury.

J Clin Invest 2020 11;130(11):5909-5923

Department of Medicine, UCSF, San Francisco, California, USA.

Antibodies targeting human leukocyte antigen (HLA)/major histocompatibility complex (MHC) proteins limit successful transplantation and transfusion, and their presence in blood products can cause lethal transfusion-related acute lung injury (TRALI). It is unclear which cell types are bound by these anti-leukocyte antibodies to initiate an immunologic cascade resulting in lung injury. We therefore conditionally removed MHC class I (MHC I) from likely cellular targets in antibody-mediated lung injury. Only the removal of endothelial MHC I reduced lung injury and mortality, related mechanistically to absent endothelial complement fixation and lung platelet retention. Restoration of endothelial MHC I rendered MHC I-deficient mice susceptible to lung injury. Neutrophil responses, including neutrophil extracellular trap (NET) release, were intact in endothelial MHC I-deficient mice, whereas complement depletion reduced both lung injury and NETs. Human pulmonary endothelial cells showed high HLA class I expression, and posttransfusion complement activation was increased in clinical TRALI. These results indicate that the critical source of antigen for anti-leukocyte antibodies is in fact the endothelium, which reframes our understanding of TRALI as a rapid-onset vasculitis. Inhibition of complement activation may have multiple beneficial effects of reducing endothelial injury, platelet retention, and NET release in conditions where antibodies trigger these pathogenic responses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI138136DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7598054PMC
November 2020

Animal models of mechanisms of SARS-CoV-2 infection and COVID-19 pathology.

Br J Pharmacol 2020 11 19;177(21):4851-4865. Epub 2020 Jul 19.

Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK.

The coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 infections has led to a substantial unmet need for treatments, many of which will require testing in appropriate animal models of this disease. Vaccine trials are already underway, but there remains an urgent need to find other therapeutic approaches to either target SARS-CoV-2 or the complications arising from viral infection, particularly the dysregulated immune response and systemic complications which have been associated with progression to severe COVID-19. At the time of writing, in vivo studies of SARS-CoV-2 infection have been described using macaques, cats, ferrets, hamsters, and transgenic mice expressing human angiotensin I converting enzyme 2 (ACE2). These infection models have already been useful for studies of transmission and immunity, but to date only partly model the mechanisms involved in human severe COVID-19. There is therefore an urgent need for development of animal models for improved evaluation of efficacy of drugs identified as having potential in the treatment of severe COVID-19. These models need to reproduce the key mechanisms of COVID-19 severe acute respiratory distress syndrome and the immunopathology and systemic sequelae associated with this disease. Here, we review the current models of SARS-CoV-2 infection and COVID-19-related disease mechanisms and suggest ways in which animal models can be adapted to increase their usefulness in research into COVID-19 pathogenesis and for assessing potential treatments. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/bph.15143DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7283621PMC
November 2020

Mitochondrial DNA Stimulates TLR9-Dependent Neutrophil Extracellular Trap Formation in Primary Graft Dysfunction.

Am J Respir Cell Mol Biol 2020 03;62(3):364-372

Department of Medicine.

The immune system is designed to robustly respond to pathogenic stimuli but to be tolerant to endogenous ligands to not trigger autoimmunity. Here, we studied an endogenous damage-associated molecular pattern, mitochondrial DNA (mtDNA), during primary graft dysfunction (PGD) after lung transplantation. We hypothesized that cell-free mtDNA released during lung ischemia-reperfusion triggers neutrophil extracellular trap (NET) formation via TLR9 signaling. We found that mtDNA increases in the BAL fluid of experimental PGD (prolonged cold ischemia followed by orthotopic lung transplantation) and not in control transplants with minimal warm ischemia. The adoptive transfer of mtDNA into the minimal warm ischemia graft immediately before lung anastomosis induces NET formation and lung injury. TLR9 deficiency in neutrophils prevents mtDNA-induced NETs, and TLR9 deficiency in either the lung donor or recipient decreases NET formation and lung injury in the PGD model. Compared with human lung transplant recipients without PGD, severe PGD was associated with high levels of BAL mtDNA and NETs, with evidence of relative deficiency in DNaseI. We conclude that mtDNA released during lung ischemia-reperfusion triggers TLR9-dependent NET formation and drives lung injury. In PGD, DNaseI therapy has a potential dual benefit of neutralizing a major NET trigger (mtDNA) in addition to dismantling pathogenic NETs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1165/rcmb.2019-0140OCDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055700PMC
March 2020

Tissue kallikrein regulates alveolar macrophage apoptosis early in influenza virus infection.

Am J Physiol Lung Cell Mol Physiol 2019 06 25;316(6):L1127-L1140. Epub 2019 Mar 25.

INSERM, U1100-Centre d'Etude des Pathologies Respiratoires , Tours , France.

Host cell proteases are involved in influenza pathogenesis. We examined the role of tissue kallikrein 1 (KLK1) by comparing wild-type (WT) and KLK1-deficient mice infected with influenza H3N2 virus. The levels of KLK1 in lung tissue and in bronchoalveolar lavage (BAL) fluid increased substantially during infection. KLK1 did not promote virus infectivity despite its trypsin-like activity, but it did decrease the initial virus load. We examined two cell types involved in the early control of pathogen infections, alveolar macrophages (AMs) and natural killer (NK) cells to learn more about the antiviral action of KLK1. Inactivating the gene or treating WT mice with an anti-KLK1 monoclonal antibody to remove KLK1 activity accelerated the initial virus-induced apoptotic depletion of AMs. Intranasal instillation of deficient mice with recombinant KLK1 (rKLK1) reversed the phenotype. The levels of granulocyte-macrophage colony-stimulating factor in infected BAL fluid were significantly lower in KLK1-deficient mice than in WT mice. Treating lung epithelial cells with rKLK1 increased secretion of this factor known to enhance AM resistance to pathogen-induced apoptosis. The recruitment of NK cells to the air spaces peaked 3 days after infection in WT mice but not in KLK1-deficient mice, as did increases in several NK-attracting chemokines (CCL2, CCL3, CCL5, and CXCL10) in BAL. Chronic obstructive pulmonary disease (COPD) patients are highly susceptible to viral infection, and we observed that the mRNA levels decreased with increasing COPD severity. Our findings indicate that KLK1 intervenes early in the antiviral defense modulating the severity of influenza infection. Decreased KLK1 expression in COPD patients could contribute to the worsening of influenza.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00379.2018DOI Listing
June 2019

Kallikrein-related peptidase 5 and seasonal influenza viruses, limitations of the experimental models for activating proteases.

Biol Chem 2018 09;399(9):1053-1064

INSERM U1100, Centre d'Etude des Pathologies Respiratoires, Faculté de Médecine, F-37032 Tours, France.

Every year, influenza A virus (IAV) affects and kills many people worldwide. The viral hemagglutinin (HA) is a critical actor in influenza virus infectivity which needs to be cleaved by host serine proteases to exert its activity. KLK5 has been identified as an activating protease in humans with a preference for the H3N2 IAV subtype. We investigated the origin of this preference using influenza A/Puerto Rico/8/34 (PR8, H1N1) and A/Scotland/20/74 (Scotland, H3N2) viruses. Pretreatment of noninfectious virions with human KLK5 increased infectivity of Scotland IAV in MDCK cells and triggered influenza pneumonia in mice. These effects were not observed with the PR8 IAV. Molecular modeling and in vitro enzymatic studies of peptide substrates and recombinant HAs revealed that the sequences around the cleavage site do not represent the sole determinant of the KLK5 preference for the H3N2 subtype. Using mouse Klk5 and Klk5-deficient mice, we demonstrated in vitro and in vivo that the mouse ortholog protease is not an IAV activating enzyme. This may be explained by unfavorable interactions between H3 HA and mKlk5. Our data highlight the limitations of some approaches used to identify IAV-activating proteases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1515/hsz-2017-0340DOI Listing
September 2018

Kallikrein-related peptidases in lung diseases.

Biol Chem 2018 09;399(9):959-971

Centre d'Etude des Pathologies Respiratoires, INSERM UMR 1100, Faculté de Médecine, 10 Boulevard Tonnellé, F-37032 Tours, France.

Human tissue kallikreins (KLKs) are 15 members of the serine protease family and are present in various healthy human tissues including airway tissues. Multiple studies have revealed their crucial role in the pathophysiology of a number of chronic, infectious and tumour lung diseases. KLK1, 3 and 14 are involved in asthma pathogenesis, and KLK1 could be also associated with the exacerbation of this inflammatory disease caused by rhinovirus. KLK5 was demonstrated as an influenza virus activating protease in humans, and KLK1 and 12 could also be involved in the activation and spread of these viruses. KLKs are associated with lung cancer, with up- or downregulation of expression depending on the KLK, cancer subtype, stage of tumour and also the microenvironment. Functional studies showed that KLK12 is a potent pro-angiogenic factor. Moreover, KLK6 promotes malignant-cell proliferation and KLK13 invasiveness. In contrast, KLK8 and KLK10 reduce proliferation and invasion of malignant cells. Considering the involvement of KLKs in various physiological and pathological processes, KLKs appear to be potential biomarkers and therapeutic targets for lung diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1515/hsz-2018-0114DOI Listing
September 2018

Kallikrein-Related Peptidase 5 Contributes to H3N2 Influenza Virus Infection in Human Lungs.

J Virol 2017 08 27;91(16). Epub 2017 Jul 27.

INSERM U1100, Centre d'Etude des Pathologies Respiratoires, Faculté de Médecine, Tours, France

Hemagglutinin (HA) of influenza virus must be activated by proteolysis before the virus can become infectious. Previous studies indicated that HA cleavage is driven by membrane-bound or extracellular serine proteases in the respiratory tract. However, there is still uncertainty as to which proteases are critical for activating HAs of seasonal influenza A viruses (IAVs) in humans. This study focuses on human KLK1 and KLK5, 2 of the 15 serine proteases known as the kallikrein-related peptidases (KLKs). We find that their mRNA expression in primary human bronchial cells is stimulated by IAV infection. Both enzymes cleaved recombinant HA from several strains of the H1 and/or H3 virus subtype , but only KLK5 promoted the infectivity of A/Puerto Rico/8/34 (H1N1) and A/Scotland/20/74 (H3N2) virions in MDCK cells. We assessed the ability of treated viruses to initiate influenza in mice. The nasal instillation of only the KLK5-treated virus resulted in weight loss and lethal outcomes. The secretion of this protease in the human lower respiratory tract is enhanced during influenza. Moreover, we show that pretreatment of airway secretions with a KLK5-selective inhibitor significantly reduced the activation of influenza A/Scotland/20/74 virions, providing further evidence of its importance. Differently, increased KLK1 secretion appeared to be associated with the recruitment of inflammatory cells in human airways regardless of the origin of inflammation. Thus, our findings point to the involvement of KLK5 in the proteolytic activation and spread of seasonal influenza viruses in humans. Influenza A viruses (IAVs) cause acute infection of the respiratory tract that affects millions of people during seasonal outbreaks every year. Cleavage of the hemagglutinin precursor by host proteases is a critical step in the life cycle of these viruses. Consequently, host proteases that activate HA can be considered promising targets for the development of new antivirals. However, the specific proteases that activate seasonal influenza viruses, especially H3N2 viruses, in the human respiratory tract have remain undefined despite many years of work. Here we demonstrate that the secreted, extracellular protease KLK5 (kallikrein-related peptidase 5) is efficient in promoting the infectivity of H3N2 IAV and Furthermore, we found that its secretion was selectively enhanced in the human lower respiratory tract during a seasonal outbreak dominated by an H3N2 virus. Collectively, our data support the clinical relevance of this protease in human influenza pathogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.00421-17DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5533929PMC
August 2017