Publications by authors named "Mário Tanomaru"

3 Publications

  • Page 1 of 1

Effect of addition of nano-hydroxyapatite on physico-chemical and antibiofilm properties of calcium silicate cements.

J Appl Oral Sci 2016 May-Jun;24(3):204-10

- Universidade Estadual Paulista, Faculdade de Odontologia de Araraquara, Departamento de Odontologia Restauradora, Araraquara, SP, Brasil.

Objective: Mineral Trioxide Aggregate (MTA) is a calcium silicate cement composed of Portland cement (PC) and bismuth oxide. Hydroxyapatite has been incorporated to enhance mechanical and biological properties of dental materials. This study evaluated physicochemical and mechanical properties and antibiofilm activity of MTA and PC associated with zirconium oxide (ZrO2) and hydroxyapatite nanoparticles (HAn).

Material And Methods: White MTA (Angelus, Brazil); PC (70%)+ZrO2 (30%); PC (60%)+ZrO2 (30%)+HAn (10%); PC (50%)+ZrO2 (30%)+HAn (20%) were evaluated. The pH was assessed by a digital pH-meter and solubility by mass loss. Setting time was evaluated by using Gilmore needles. Compressive strength was analyzed by mechanical test. Samples were radiographed alongside an aluminum step wedge to evaluate radiopacity. For the antibiofilm evaluation, materials were placed in direct contact with E. faecalis biofilm induced on dentine blocks. The number of colony-forming units (CFU mL-1) in the remaining biolfilm was evaluated. The results were submitted to ANOVA and the Tukey test, with 5% significance.

Results: There was no difference in pH levels of PC+ZrO2, PC+ZrO2+HAn (10%) and PC+ZrO2+HAn (20%) (p>0.05) and these cements presented higher pH levels than MTA (p<0.05). The highest solubility was observed in PC+ZrO2+HAn (10%) and PC+ZrO2+HAn (20%) (p<0.05). MTA had the shortest initial setting time (p<0.05). All the materials showed radiopacity higher than 3 mmAl. PC+ZrO2 and MTA had the highest compressive strength (p<0.05). Materials did not completely neutralize the bacterial biofilm, but the association with HAn provided greater bacterial reduction than MTA and PC+ZrO2 (p<0.05) after the post-manipulation period of 2 days.

Conclusions: The addition of HAn to PC associated with ZrO2 harmed the compressive strength and solubility. On the other hand, HAn did not change the pH and the initial setting time, but improved the radiopacity (HAn 10%), the final setting time and the E. faecalis antibiofilm activity of the cement.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
December 2016

Cytotoxicity and genotoxicity of calcium silicate-based cements on an osteoblast lineage.

Braz Oral Res 2016 May;30(1)

Universidade Estadual Paulista - UNESP, Araraquara School of Dentistry, Department of Restorative Dentistry, Araraquara, SP, Brazil.

Several calcium silicate-based biomaterials have been developed in recent years, in addition to Mineral Trioxide Aggregate (MTA). The aim of this study was to evaluate the cytotoxicity, genotoxicity and apoptosis/necrosis in human osteoblast cells (SAOS-2) of pure calcium silicate-based cements (CSC) and modified formulations: modified calcium silicate-based cements (CSCM) and three resin-based calcium silicate cements (CSCR1) (CSCR 2) (CSCR3). The following tests were performed after 24 hours of cement extract exposure: methyl-thiazolyl tetrazolium (MTT), apoptosis/necrosis assay and comet assay. The negative control (CT-) was performed with untreated cells, and the positive control (CT+) used hydrogen peroxide. The data for MTT and apoptosis were submitted to analysis of variance and Bonferroni's posttest (p < 0.05), and the data for the comet assay analysis, to the Kruskal-Wallis and Dunn tests (p < 0.05). The MTT test showed no significant difference among the materials in 2 mg/mL and 10 mg/mL concentrations. CSCR3 showed lower cell viability at 10 mg/mL. Only CSC showed lower cell viability at 50 mg/mL. CSCR1, CSCR2 and CSCR3 showed a higher percentage of initial apoptosis than the control in the apoptosis test, after 24 hours exposure. The same cements showed no genotoxicity in the concentration of 2 mg/mL, with the comet assay. CSC and CSCR2 were also not genotoxic at 10 mg/mL. All experimental materials showed viability with MTT. CSC and CSCR2 presented a better response to apoptosis and genotoxicity evaluation in the 10 mg/mL concentration, and demonstrated a considerable potential for use as reparative materials.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
May 2016

Performance of RaCe instrumentation system in curved root canals: a comprehensive analysis by three study methods.

Braz Dent J 2013 ;24(3):230-4

Department of Dentistry, Positivo University, Curitiba, PR, Brazil.

In this study, curved maxillary molar root canals were instrumented with RaCe rotary system to evaluate: 1. the occurrence of canal transportation using a radiographic platform; 2. the action of the instruments on the dentin walls, centering ability and canal enlargement by analysis of digital images; and the percentage of regular dentin surfaces and debris within the canal by histological analysis. Ten mesiobuccal roots of extracted human maxillary molars were embedded in acrylic resin and sectioned at the middle and apical thirds. Root canal shaping was performed using the RaCe rotary system at 250 rpm and 1 Ncm torque. Each instrument set was used five times according to a crown-down technique in the following sequence: 40/0.10, 35/0.08, 25/0.06, 25/0.04, 25/0.02 (working length - WL), 30/0.02 (WL) and 35/0.02 (WL). Each instrument was inserted until resistance was felt and then pulled back, followed by brushing movements towards all canal walls. Each specimen was assessed by three study methods: radiographic platform, digitized image assessment and histological analysis. The radiographic platform showed lack of apical transportation. No statistically significant difference (Wilcoxon test, p>0.05) was found between the middle and apical thirds regarding instrument action on dentin walls, centering ability, area of root canal enlargement, percentage of regular dentin surfaces and debris within the root canal. It may be concluded that RaCe system is a suitable method for the preparation of curved root canals, regarding the maintenance of root canal original path, action on dentin walls, canal enlargement and removal of debris from the root canal lumen.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
September 2015