Publications by authors named "Lyudmila P Nazarenko"

8 Publications

  • Page 1 of 1

Differential DNA Methylation of the IMMP2L Gene in Families with Maternally Inherited 7q31.1 Microdeletions is Associated with Intellectual Disability and Developmental Delay.

Cytogenet Genome Res 2021 Apr 13:1-15. Epub 2021 Apr 13.

Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation.

Most copy number variations (CNVs) in the human genome display incomplete penetrance with unknown underlying mechanisms. One such mechanism may be epigenetic modification, particularly DNA methylation. The IMMP2L gene is located in a critical region for autism susceptibility on chromosome 7q (AUTS1). The level of DNA methylation was assessed by bisulfite sequencing of 87 CpG sites in the IMMP2L gene in 3 families with maternally inherited 7q31.1 microdeletions affecting the IMMP2L gene alone. Bisulfite sequencing revealed comparable levels of DNA methylation in the probands, healthy siblings without microdeletions, and their fathers. In contrast, a reduced DNA methylation index and increased IMMP2L expression were observed in lymphocytes from the healthy mothers compared with the probands. A number of genes were upregulated in the healthy mothers compared to controls and downregulated in probands compared to mothers. These genes were enriched in components of the ribosome and electron transport chain, as well as oxidative phosphorylation and various degenerative conditions. Differential expression in probands and mothers with IMMP2L deletions relative to controls may be due to compensatory processes in healthy mothers with IMMP2L deletions and disturbances of these processes in probands with intellectual disability. The results suggest a possible partial compensation for IMMP2L gene haploinsufficiency in healthy mothers with the 7q31.1 microdeletion by reducing the DNA methylation level. Differential DNA methylation of intragenic CpG sites may affect the phenotypic manifestation of CNVs and explain the incomplete penetrance of chromosomal microdeletions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1159/000514491DOI Listing
April 2021

46,XY,r(8)/45,XY,-8 Mosaicism as a Possible Mechanism of the Imprinted Birk-Barel Syndrome: A Case Study.

Genes (Basel) 2020 Dec 9;11(12). Epub 2020 Dec 9.

Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Ushaika Street 10, 634050 Tomsk, Russia.

Ring chromosome 8 (r(8)) is one of the least frequent ring chromosomes. Usually, maternal chromosome 8 forms a ring, which can be lost from cells due to mitotic instability. The 8q24 region contains the imprinted gene, which is expressed from the maternal allele. Heterozygous mutations are associated with the imprinting disorder Birk-Barel syndrome. Here, we report a 2.5-year-old boy with developmental delay, microcephaly, dysmorphic features, diffuse muscle hypotonia, feeding problems, motor alalia and noncoarse neurogenic type of disturbance of muscle electrogenesis, partially overlapping with Birk-Barel syndrome phenotype. Cytogenetic analysis of lymphocytes revealed his karyotype to be 46,XY,r(8)(p23q24.3)[27]/45,XY,-8[3]. A de novo 7.9 Mb terminal 8p23.3p23.1 deletion, a 27.1 Mb 8p23.1p11.22 duplication, and a 4.4 Mb intact segment with a normal copy number located between them, as well as a 154-kb maternal gene deletion (9p21.2) with unknown clinical significance were identified by aCGH + SNP array. These aberrations were confirmed by real-time PCR. According to FISH analysis, the 8p23.1-p11.22 duplication was inverted. The ring chromosome originated from maternal chromosome 8. Targeted massive parallel sequencing did not reveal the mutations associated with Birk-Barel syndrome. Our data allow to assume that autosomal monosomy with inactive allele of imprinted gene arising from the loss of a ring chromosome in some somatic cells may be an etiological mechanism of mosaic imprinting disorders, presumably with less severe phenotype.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/genes11121473DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763634PMC
December 2020

Delineation of Clinical Manifestations of the Inherited Xq24 Microdeletion Segregating with sXCI in Mothers: Two Novel Cases with Distinct Phenotypes Ranging from UBE2A Deficiency Syndrome to Recurrent Pregnancy Loss.

Cytogenet Genome Res 2020 30;160(5):245-254. Epub 2020 May 30.

Chromosomal microdeletion syndromes present with a wide spectrum of clinical phenotypes that depend on the size and gene content of the affected region. In a healthy carrier, epigenetic mechanisms may compensate for the same microdeletion, which may segregate through several generations without any clinical symptoms until the epigenetic modifications no longer function. We report 2 novel cases of Xq24 microdeletions inherited from mothers with extremely skewed X-chromosome inactivation (sXCI). The first case is a boy presenting with X-linked mental retardation, Nascimento type, due to a 168-kb Xq24 microdeletion involving 5 genes (CXorf56, UBE2A, NKRF, SEPT6, and MIR766) inherited from a healthy mother and grandmother with sXCI. In the second family, the presence of a 239-kb Xq24 microdeletion involving 3 additional genes (SLC25A43, SLC25A5-AS1, and SLC25A5) was detected in a woman with sXCI and a history of recurrent pregnancy loss with a maternal family history without reproductive wastages or products of conception. These cases provide evidence that women with an Xq24 microdeletion and sXCI may be at risk for having a child with intellectual disability or for experiencing a pregnancy loss due to the ontogenetic pleiotropy of a chromosomal microdeletion and its incomplete penetrance modified by sXCI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1159/000508050DOI Listing
September 2020

A mosaic intragenic microduplication of LAMA1 and a constitutional 18p11.32 microduplication in a patient with keratosis pilaris and intellectual disability.

Am J Med Genet A 2018 11 23;176(11):2395-2403. Epub 2018 Sep 23.

Laboratory of Cytogenetics, Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia.

The application of array-based comparative genomic hybridization and next-generation sequencing has identified many chromosomal microdeletions and microduplications in patients with different pathological phenotypes. Different copy number variations are described within the short arm of chromosome 18 in patients with skin diseases. In particular, full or partial monosomy 18p has also been associated with keratosis pilaris. Here, for the first time, we report a young male patient with intellectual disability, diabetes mellitus (type I), and keratosis pilaris, who exhibited a de novo 45-kb microduplication of exons 4-22 of LAMA1, located at 18p11.31, and a 432-kb 18p11.32 microduplication of paternal origin containing the genes METTL4, NDC80, and CBX3P2 and exons 1-15 of the SMCHD1 gene. The microduplication of LAMA1 was identified in skin fibroblasts but not in lymphocytes, whereas the larger microduplication was present in both tissues. We propose LAMA1 as a novel candidate gene for keratosis pilaris. Although inherited from a healthy father, the 18p11.32 microduplication, which included relevant genes, could also contribute to phenotype manifestation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.40478DOI Listing
November 2018

Compound phenotype in a girl with r(22), concomitant microdeletion 22q13.32-q13.33 and mosaic monosomy 22.

Mol Cytogenet 2018 27;11:26. Epub 2018 Apr 27.

1Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia.

Background: Ring chromosome instability may influence a patient's phenotype and challenge its interpretation.

Results: Here, we report a 4-year-old girl with a compound phenotype. Cytogenetic analysis revealed her karyotype to be 46,XX,r(22). aCGH identified a 180 kb 22q13.32 duplication, a 2.024 Mb subtelomeric 22q13.32-q13.33 deletion, which is associated with Phelan-McDermid syndrome, and a maternal single gene 382-kb deletion of uncertain clinical significance located in the region of the 3q13.31 deletion syndrome. All chromosomal aberrations were confirmed by real-time PCR in lymphocytes and detected in skin fibroblasts. The deletions were also found in the buccal epithelium. According to FISH analysis, 8% and 24% of the patient's lymphocytes and skin fibroblasts, respectively, had monosomy 22.

Conclusions: We believe that a combination of 22q13.32-q13.33 deletion and monosomy 22 in a portion of cells can better define the clinical phenotype of the patient. Importantly, the presence of monosomic cells indicates ring chromosome instability, which may favor karyotype correction that is significant for the development of chromosomal therapy protocols.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13039-018-0375-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5923029PMC
April 2018

A de novo microtriplication at 4q21.21-q21.22 in a patient with a vascular malignant hemangioma, elongated sigmoid colon, developmental delay, and absence of speech.

Am J Med Genet A 2016 08 10;170(8):2089-96. Epub 2016 Jun 10.

Institute of Medical Genetics, Tomsk, Russia.

The widespread application of array comparative genomic hybridization (aCGH) has provided new insights into the clinical significance of copy number variations (CNVs) in the human genome. Many microdeletion syndromes have recently been linked to corresponding reciprocal microduplication syndromes related to CNVs in the same chromosomal regions. However, the extent of CNVs may not be restricted to only microduplications but may also include microtriplications or even quadruplications. 4q21 microdeletion syndrome is one of these recently described syndromes. The phenotype includes growth restriction, neonatal hypotonia, severe developmental delay, absent or delayed speech, and distinct facial features. The minimal critical deleted region, which is 1.3 Mb in size, contains the PRKG2, RASGEF1B, HNRNPD, HNRPDL, and ENOPH1 genes. Here, we report a 5.4-year-old girl with developmental delay, absence of speech, muscular hypertension, macrocephaly, a broad forehead, frontal bossing, relatively elongated extremities, a vascular malignant hemangioma in anamnesis, and elongated sigmoid colon. aCGH revealed a microtriplication at 4q21.21-q21.22 that was 1.61 Mb in size. This de novo microtriplication included nine genes (BMP3, PRKG2, RASGEF1B, HNRNPD, HNRPDL, ENOPH1, TMEM150C, LINC00575, and SCD5) and overlapped with the minimal critical region for 4q21 microdeletion syndrome. Some clinical features of the patient were similar to those of 4q21 microdeletion (macrocephaly, frontal bossing, developmental delay, absence of speech, and anxiety), whereas others were mirrored (elongated extremities and muscular hypertension). The first identified case of a de novo microtriplication at 4q21.21-q21.22 emphasizes the clinical significance of CNVs at 4q21 for patients with developmental delay and absence of speech. © 2016 Wiley Periodicals, Inc.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.37754DOI Listing
August 2016

Single gene microdeletions and microduplication of 3p26.3 in three unrelated families: CNTN6 as a new candidate gene for intellectual disability.

Mol Cytogenet 2014 31;7(1):97. Epub 2014 Dec 31.

Laboratory of Cytogenetics, Institute of Medical Genetics, 10 Nab. Ushaiki, 634050 Tomsk, Russia ; Department of Medical Genetics, Siberian State Medical University, Tomsk, Russia.

Background: Detection of submicroscopic chromosomal alterations in patients with a idiopathic intellectual disability (ID) allows significant improvement in delineation of the regions of the genome that are associated with brain development and function. However, these chromosomal regions usually contain several protein-coding genes and regulatory elements, complicating the understanding of genotype-phenotype correlations. We report two siblings with ID and an unrelated patient with atypical autism who had 3p26.3 microdeletions and one intellectually disabled patient with a 3p26.3 microduplication encompassing only the CNTN6 gene.

Results: Two 295.1-kb microdeletions and one 766.1-kb microduplication of 3p26.3 involving a single gene, CNTN6, were identified with an Agilent 60K array. Another 271.9-kb microdeletion of 3p26.3 was detected using an Affymetrix CytoScan HD chromosome microarray platform. The CHL1 and CNTN4 genes, although adjacent to the CNTN6 gene, were not affected in either of these patients.

Conclusions: The protein encoded by CNTN6 is a member of the immunoglobulin superfamily and functions as a cell adhesion molecule that is involved in the formation of axon connections in the developing nervous system. Our results indicate that CNTN6 may be a candidate gene for ID.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13039-014-0097-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4299808PMC
January 2015

Array CGH analysis of a cohort of Russian patients with intellectual disability.

Gene 2014 Feb 27;536(1):145-50. Epub 2013 Nov 27.

Institute of Medical Genetics, Tomsk, Russia.

The use of array comparative genomic hybridization (array CGH) as a diagnostic tool in molecular genetics has facilitated the identification of many new microdeletion/microduplication syndromes (MMSs). Furthermore, this method has allowed for the identification of copy number variations (CNVs) whose pathogenic role has yet to be uncovered. Here, we report on our application of array CGH for the identification of pathogenic CNVs in 79 Russian children with intellectual disability (ID). Twenty-six pathogenic or likely pathogenic changes in copy number were detected in 22 patients (28%): 8 CNVs corresponded to known MMSs, and 17 were not associated with previously described syndromes. In this report, we describe our findings and comment on genes potentially associated with ID that are located within the CNV regions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2013.11.029DOI Listing
February 2014