Publications by authors named "Lynn A D"

5 Publications

  • Page 1 of 1

Understanding the host response to cell-laden poly(ethylene glycol)-based hydrogels.

Biomaterials 2013 Jan 10;34(4):952-64. Epub 2012 Nov 10.

Department of Chemical & Biological Engineering, University of Colorado, Boulder, CO 80303, USA.

Poly(ethylene glycol) (PEG)-based hydrogels are promising in situ cell carriers for tissue engineering. However, their success in vivo will in part depend upon the foreign body reaction (FBR). This study tests the hypothesis that the FBR affects cells encapsulated within PEG hydrogels, and in turn influences the severity of the FBR. Fibroblasts were encapsulated within PEG hydrogels containing RGD to support cell attachment. Macrophages were seeded on top of cell-laden hydrogels to mimic in vivo macrophage interrogation and treated with lipopolysaccharide to induce an inflammatory phenotype. The presence of activated macrophages reduced fibroblast gene expression for extracellular matrix molecules and remodeling, but stimulated VEGF and IL-1β gene expression. Fibroblasts impacted macrophage phenotype leading to increased iNOS, IL-1β and TNF-α expressions. Syngeneic cell-laden and acellular hydrogels were also implanted subcutaneously into C57bl/6 mice for 2, 7 and 28 days. Encapsulated fibroblasts secreted collagen type I during the first week, but tissue deposition and cellularity decreased by 28 days. The presence of encapsulated fibroblasts led to greater acute inflammation, but did not influence the fibrotic response. In summary, this work emphasizes the importance of the host response in tissue engineering, and the potentially deleterious impact it may have on cell-laden synthetic scaffolds.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2012.10.037DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683297PMC
January 2013

Temporal progression of the host response to implanted poly(ethylene glycol)-based hydrogels.

J Biomed Mater Res A 2011 Mar 25;96(4):621-31. Epub 2011 Jan 25.

Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, USA.

Poly(ethylene glycol) (PEG) hydrogels hold great promise as in vivo cell carriers for tissue engineering. To ensure appropriate performance of these materials when implanted, the host response must be well understood. The objectives for this study were to characterize the temporal evolution of the foreign body reaction (FBR) to acellular PEG-based hydrogels prepared from PEG diacrylate precursors when implanted subcutaneously in immunocompentent c57bl/6 mice by (immuno)histochemical analysis and gene expression. Compared with a normal FBR elicited by silicone (SIL), PEG hydrogels without or with a cell adhesion ligand RGD elicited a strong early inflammatory response evidenced by a thick band of macrophages as early as day 2, persisting through two weeks, and by increased interleukin-1β expression. PEG-only hydrogels showed a slower, but more sustained progression of inflammation over PEG-RGD. Temporal changes in gene expression were observed in response to PEG-based materials and in general exhibited, elevated expression of inflammatory and wound healing genes in the tissues surrounding the implants, while the expression patterns were more stable in response to SIL. While a stabilized FBR was achieved with SIL and to a lesser degree with PEG-RGD, the PEG-only hydrogels had not yet stabilized after 4 weeks. In summary, PEG-only hydrogels elicit a strong early inflammatory reaction, which persists throughout the course of the implantation even as a collagenous capsule begins to form. However, the incorporation of RGD tethers partially attenuates this response within 2 weeks leading to an improved FBR to PEG-based hydrogels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.33015DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3091279PMC
March 2011

Phenotypic changes in bone marrow-derived murine macrophages cultured on PEG-based hydrogels activated or not by lipopolysaccharide.

Acta Biomater 2011 Jan 30;7(1):123-32. Epub 2010 Jul 30.

Department of Chemical and Biological Engineering, University of Colorado at Boulder, 80309, USA.

Macrophages are phenotypically diverse cells performing a number of functions involved in immunity, inflammation, wound healing, tissue homeostasis and the foreign body reaction. In the latter, the type of biomaterial and the surrounding environment likely have an impact on macrophage phenotype and, subsequently, the severity of the reaction. The objectives for this study were to characterize the phenotype of bone marrow-derived murine macrophages in response to poly(ethylene glycol) (PEG)-based hydrogels, a promising class of materials for cell delivery. Gene expression was used as a measure of phenotype and characterized by IL-1β, TNF-α, iNOS, IL-12β, arginase, VEGF-A, and IL-10. Macrophages were cultured on PEG hydrogels, PEG hydrogels with RGD tethers, and medical grade silicone rubber, a well-characterized biomaterial, up to 96 h in the absence and presence of lipopolysaccharide (LPS) to simulate an inflammatory environment. Macrophage interrogation led to immediate up-regulation (10×) of IL-1β and TNF-α within 4h, followed by an increase in IL-10/IL-12β and a subsequent concomitant decrease in the pro-inflammatory genes by 96 h, suggesting a shift from classically activated to a regulatory phenotype. LPS stimulation led to a stronger early up-regulation of pro-inflammatory genes (e.g. 20-30× for IL-1β and TNF-α), followed by upregulation (4-6×) of arginase, suggesting a shift from an elevated classically activated to a wound healing phenotype. Material type played a significant role in regulating pro-inflammatory genes, which was most pronounced with PEG alone. Overall, our findings indicate that macrophages undergo similar phenotypic changes for the materials tested, but the magnitudes of these responses are highly material dependent.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2010.07.033DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967672PMC
January 2011

Biocompatible interface films deposited within porous polymers by Atomic Layer Deposition (ALD).

ACS Appl Mater Interfaces 2009 Sep;1(9):1988-95

Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, USA.

Ultrathin ceramic films were deposited throughout highly porous poly(styrene-divinylbenzene) (PS-DVB) particles using a low-temperature atomic layer deposition (ALD) process. Alumina and titania films were deposited by alternating reactions of trimethylaluminum and H2O at 33 degrees C and of titanium tetrachloride and H2O2 (50 wt % in H2O) at 100 degrees C, respectively. Analytical characterization revealed that conformal alumina and titania films were grown on internal and external polymer surfaces. The improved bioactivity of the polymer substrates was revealed on the basis of the formation of hydroxyapatite (HA) in simulated body fluid. The accelerated formation of HA on the ALD-modified polymer surface was caused by the negatively charged surface provided by the ultrathin ceramic interface. The potential for ALD films to support cell attachment was demonstrated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/am9003667DOI Listing
September 2009

Characterization of the in vitro macrophage response and in vivo host response to poly(ethylene glycol)-based hydrogels.

J Biomed Mater Res A 2010 Jun;93(3):941-53

Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309-0424, USA.

Photopolymerizable poly(ethylene glycol) (PEG)- based hydrogels have great potential as in vivo cell delivery vehicles for tissue engineering. However, their success in vivo will be dependent on the host response. The objectives for this study were to explore the in vivo host response and in vitro macrophage response to commonly used PEG-based hydrogels, PEG and PEG containing RGD. Acellular hydrogels were implanted subcutaneously into c57bl/6 mice and the foreign body response (FBR) was compared to medical grade silicone. Our findings demonstrated PEG-RGD hydrogels resulted in a FBR similar to silicone, while PEG-only hydrogels resulted in a robust inflammatory reaction characterized by a thick layer of macrophages at the material surface with evidence of gel degradation. In vitro, bone marrow-derived primary macrophages adhered well and similarly to PEG-based hydrogels, silicone, and tissue culture polystyrene when cultured for 4 days. Significantly higher gene expressions of the proinflammatory cytokines, TNF-alpha and Il-1beta, were found in macrophages seeded onto PEG compared to PEG-RGD and silicone at 1 and 2 days. PEG hydrogels were also shown to be susceptible to oxidative biodegradation. Our findings indicate that PEG-only hydrogels are proinflammatory while RGD attenuates this negative reaction leading to a moderate FBR.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.32595DOI Listing
June 2010