Publications by authors named "Lunguang Yao"

109 Publications

Epidemiological investigations and locally determined genotype diversity of Mycoplasma synoviae in Central China from 2017 to 2019.

Poult Sci 2021 Oct 10;101(1):101522. Epub 2021 Oct 10.

College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China.

Mycoplasma synoviae (M. synoviae) has been identified worldwide to cause respiratory diseases, infectious synovitis, airsacculitis, and eggshell apex abnormalities (EAA) in commercial chickens, which results in substantial economic losses to the poultry industry. Therefore, in this study, 258 flocks were investigated between 2017 and 2019 for M. synoviae by screening samples from Central China. Subsequently, 129 M. synoviae strains were isolated, with a positive rate of 50%. Moreover, a higher incidence of M. Synoviae infections was in layers (74.1%) than in broilers (20%) in this study. The 5'-end conserved segment of the variable lipoprotein hemagglutinin A (vlhA) gene of these isolates was then cloned and sequenced because it is a common genomic target identified so far for M. synoviae genotyping. Genotyping of all isolates was based on the phylogenetic analysis and length analysis of the proline-rich-repeat (PRR) regions, respectively. Phylogenetic analysis based on 5'-end conserved segment of the vlhA gene (76-421 nt) assigned the majority of the occurring strains as being from group 6, and others from groups 2 and 3. Results identified that these isolates were of 6 types: A (38aa), D (23aa), E (19aa), I (28aa), J (20aa), and L (35aa), based on the size of the PRR region analysis. Furthermore, most of the isolates (81.4% were identified as type L. Additionally, the epidemic types included only I and L in 2017; however, the types rose to 5 (A, D, E, I, L) in 2018 and rose to 6 (A, D, E, I, J, L) in 2019. These data showed the genotype diversity of M. synoviae in Central China. The high rate of positive flocks suggests the urgent need to take real-time supervisory controls of this Mycoplasma species in avian flocks.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.psj.2021.101522DOI Listing
October 2021

Tandem Mass Tag-Based Quantitative Proteomics and Virulence Phenotype of Hemolymph-Treated Bacillus thuringiensis kurstaki Cells Reveal New Insights on Bacterial Pathogenesis in Insects.

Microbiol Spectr 2021 Oct 27;9(2):e0060421. Epub 2021 Oct 27.

China-UK-NYNU-RRES Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, School of Life Sciences and Agricultural Engineering, Nanyang Normal Universitygrid.453722.5 (NYNU), Nanyang, People's Republic of China.

The spore-forming bacterium Bacillus thuringiensis (Bt) of the Bacillus cereus group uses toxin-opened breaches at the insect midgut epithelium to infest the hemolymph, where it can rapidly propagate despite antimicrobial host defenses and induce host death by acute septicemia. The response of Bt to host hemolymph and the latter's role in bacterial pathogenesis is an area that needs clarification. Here, we report a proteomic analysis of the Bt strain HD73 (Btk) hemolymph stimulon showing significant changes in 60 (34 up- and 26 downregulated) differentially accumulated proteins (DAPs). Gene ontology (GO) enrichment analysis revealed that DAPs were mainly related to glutamate metabolism, transketolase activity, and ATP-dependent transmembrane transport. KEGG analysis disclosed that DAPs were highly enriched in the biosynthesis of bacterial secondary metabolites, ansamycins. Interestingly, about 30% of all DAPs were predicted as putative virulence factors. Further characterization of hemolymph effects on Btk showed enhanced autoaggregation in liquid cultures and biofilm formation in microtiter polystyrene plates. Hemolymph-exposed Btk cells were less immunogenic in mice, suggesting epitope masking of selected surface proteins. Bioassays with intrahemocoelically infected Bombyx mori larvae showed that hemolymph preexposure significantly increased Btk toxicity and reproduction within the insect (spore count per cadaver) at low inoculum doses, possibly due to 'virulence priming'. Collectively, our findings suggest that the Btk hemolymph stimulon could be partially responsible for bacterial survival and propagation within the hemolymph of infected insects, contributing to its remarkable success as an entomopathogen. All mass spectrometry data are available via ProteomeXchange with identifier PXD021830. After ingestion by a susceptible insect and damaging its midgut epithelium, the bacterium Bacillus thuringiensis (Bt) reaches the insect blood (hemolymph), where it propagates despite the host's antimicrobial defenses and induces insect death by acute septicemia. Although the hemolymph stage of the Bt toxic pathway is determinant for the infested insects' fate, the response of Bt to hemolymph and the latter's role in bacterial pathogenesis has been poorly explored. In this study, we identified the bacterial proteins differentially expressed by Bt after hemolymph exposure. We found that about 30% of hemolymph-regulated Bt proteins were potential virulence factors, including manganese superoxide dismutase, a described inhibitor of hemocyte respiratory burst. Additionally, contact with hemolymph enhanced Bt virulence phenotypes, such as cell aggregation and biofilm formation, altered bacterial immunogenicity, and increased Bt toxicity to intrahemocoelically injected insects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/Spectrum.00604-21DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8549738PMC
October 2021

MicroRNA ssc-miR-124a exhibits antiviral activity against porcine reproductive and respiratory syndrome virus via suppression of host genes CD163.

Vet Microbiol 2021 Oct 24;261:109216. Epub 2021 Aug 24.

Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang, 473061, China; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-Line of South-to-North Diversion Project of Henan Province, Nanyang, 473061, China; School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China. Electronic address:

Porcine reproductive and respiratory syndrome (PRRS) is a serious infectious disease in the swine industry, which causes severe economic losses to current swine production worldwide. There are no effective antiviral strategies for preventing this disease. Previous studies showed that microRNAs (miRNAs) play important role in virus-host interactions. In this study, we demonstrated that the expression level of ssc-miR-124a was significantly downregulated during both high and low pathogenic PRRSV infection. Overexpression of ssc-miR-124a markedly inhibits PRRSV replication in PAMs. Luciferase reporter experiments and RISC immunoprecipitation assay were used to identify the ssc-miR-124a could directly target the 3'UTR of pig CD163 mRNA in a sequence-specific manner and that CD163 mRNA and protein levels were reduced in PAMs overexpressing ssc-miR-124a. These data not only provide new insights into virus-host interactions during PRRSV infection, but also suggest potential new antiviral strategies against PRRSV infection in the future.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2021.109216DOI Listing
October 2021

First report of a novel goose astrovirus outbreak in Muscovy ducklings in China.

Poult Sci 2021 Oct 26;100(10):101407. Epub 2021 Jul 26.

College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China.

A highly acute disease characterized as visceral gout broke out in Muscovy ducklings in Henan province (China) in June 2020, with a mortality rate of up to 61%. In this study, common pathogenic agents were screened using reverse-transcription polymerase chain reaction or polymerase chain reaction. The results found the novel goose astrovirus (GoAstV) to be the pathogenic agent. We isolated the GoAstV, which has been designated as HNNY0620, using the Leghorn male chicken hepatocellular carcinoma (LMH) cell line and sequenced the complete genome. The phylogenetic tree showed that the amino acid (aa) sequences of ORF1a and ORF2 and the completed nucleotide sequences of the HNNY0620 strain were clustered in the GoAstV-I clade. ORF1a aa and whole-genome sequences were genetically close to TAstV-2 and DHV-3, whereas the ORF2 aa sequences were clustered with TAstV-2 and DHV2. Both the duck-origin GoAstVs and HNNY0620 harbored some special mutations, but ORF1a in 700 (I/T), ORF1b in 288 (F/L), and ORF2 in 306 (A/T) were only found in HNNY0620. These results suggest that the host range of GoAstV is diffusing, which can potentially affect other waterfowl.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.psj.2021.101407DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8383103PMC
October 2021

Enhanced adsorption of perfluorooctanoate (PFOA) onto low oxygen content ordered mesoporous carbon (OMC): Adsorption behaviors and mechanisms.

J Hazard Mater 2022 01 2;421:126810. Epub 2021 Aug 2.

Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA 70504, USA; Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA.

The pollution of perfluorooctanoic acid (PFOA) in water bodies has been a serious threat to environment and human health. Ordered mesoporous carbons (OMCs) with different oxygen contents were prepared and first used for adsorbing PFOA from aqueous solutions. The OMC-900 with a lower oxygen content has a higher PFOA adsorption capacity than the oxygen-rich OMC-700. OMCs require a much shorter time to reach the adsorption equilibrium comparing with other adsorbents reported in literature. The mesopores play an important role in this rapid adsorption kinetics. The pseudo-second-order model better fitted the kinetic data. The multilayers adsorption was proposed for the adsorption of PFOA onto OMCs since the Freundlich isotherm model fits the experimental data well. The micelle or hemi-micelle structures may be formed during the adsorption. Various background salts showed a positive effect on PFOA adsorption due to the salting-out and divalent bridge effects. The humic acid can lead to a discernible reduction in PFOA adsorption by competing for adsorption sites on OMCs. The hydrophobic interaction and electrostatic interaction adsorption mechanisms were proposed and verified by the adsorption data. The high adsorption capacity and fast adsorption kinetics of the OMC make it a potential adsorbent for PFOA removal in engineering applications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.126810DOI Listing
January 2022

Identification of a prognostic ferroptosis-related lncRNA signature in the tumor microenvironment of lung adenocarcinoma.

Cell Death Discov 2021 Jul 26;7(1):190. Epub 2021 Jul 26.

Henan Provincial Engineering Laboratory of Insects Bioreactor, Nanyang Normal University, Nanyang, China.

Ferroptosis is closely linked to various cancers, including lung adenocarcinoma (LUAD); however, the factors involved in the regulation of ferroptosis-related genes are not well established. In this study, we identified and characterized ferroptosis-related long noncoding RNAs (lncRNAs) in LUAD. In particular, a coexpression network of ferroptosis-related mRNAs and lncRNAs from The Cancer Genome Atlas (TCGA) was constructed. Univariate and multivariate Cox proportional hazards analyses were performed to establish a prognostic ferroptosis-related lncRNA signature (FerRLSig). We obtained a prognostic risk model consisting of 10 ferroptosis-related lncRNAs: AL606489.1, AC106047.1, LINC02081, AC090559.1, AC026355.1, FAM83A-AS1, AL034397.3, AC092171.5, AC010980.2, and AC123595.1. High risk scores according to the FerRLSig were significantly associated with poor overall survival (hazard ratio (HR) = 1.412, 95% CI = 1.271-1.568; P < 0.001). Receiver operating characteristic (ROC) curves and a principal component analysis further supported the accuracy of the model. Next, a prognostic nomogram combining FerRLSig with clinical features was established and showed favorable predictive efficacy for survival risk stratification. In addition, gene set enrichment analysis (GSEA) revealed that FerRLSig is involved in many malignancy-associated immunoregulatory pathways. Based on the risk model, we found that the immune status and response to immunotherapy, chemotherapy, and targeted therapy differed significantly between the high-risk and low-risk groups. These results offer novel insights into the pathogenesis of LUAD, including the contribution of ferroptosis-related lncRNAs, and reveal a prognostic indicator with the potential to inform immunological research and treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41420-021-00576-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8313561PMC
July 2021

A rapid reduction of Au(I→0) strategy for the colorimetric detection and discrimination of proteins.

Mikrochim Acta 2021 07 12;188(8):249. Epub 2021 Jul 12.

Department of Chemistry, Capital Normal University, Beijing, 100048, China.

A gold nanoparticle (AuNP)-based sensing strategy based on rapid reduction of Au(I→0) is proposed. As a proof-of-concept study, the proposed sensing principle is designed for simultaneous and colorimetric detection and discrimination of multiple proteins. In the presence of HO, the target proteins could reduce Au(I) (i.e. HAuCl) to AuNPs with different sizes, shapes and dispersion/aggregation states, thus resulting in rapidly colorimetric identification of different proteins. The optical response (i.e. color) of AuNPs is found to be characteristic of a given protein. The color response patterns are characteristic for each protein and can be quantitatively differentiated by statistical techniques. The sensor array is capable of discriminating proteins at concentrations as low as 0.1 μg/mL with high accuracy. A linear relationship was observed between the total Euclidean distances and protein concentration, providing the potential for protein quantification using this sensor array. The limit of detection (LOD) for catalase (Cat) is 0.08 μg/mL. The good linear range (from 0 to 8 μg/mL) has been used for the quantitative assay of Cat. To show a potentially practical application, this method was used to detect and discriminate proteins in human urine and tear samples. Graphical abstract We report a facile gold nanoparticle (AuNP)-based sensing strategy, that is, "a rapid reduction of Au(I) to Au(0) nanoparticles with different sizes and shapes by analytes that having certain reducing capabilities, resulting in different colours." The proposed sensing principle is designed for simultaneous, colorimetric detection and discrimination of multiple proteins.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-021-04906-xDOI Listing
July 2021

Role of polystyrene microplastics in sunlight-mediated transformation of silver in aquatic environments: Mechanisms, kinetics and toxicity.

J Hazard Mater 2021 10 21;419:126429. Epub 2021 Jun 21.

Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; China University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Sunlight-oxidative ageing is a common and critical process for microplastics (MPs) in aquatic environments. O, O, and •OH generation has been widely proven in this process, which can alter metal speciation based on its reduction and oxidation potential. Herein, chemical speciation of Ag mediated by polystyrene (PS) MPs was determined under simulated sunlight irradiation. The O generation on the PS MPs surfaces is the vital factor for Ag reduction, regardless of acid or base conditions. The O and •OH are dominant factors, and O played a more important role than •OH for its higher formation amount, causing oxidative dissolution of newly formed Ag nanoparticles (NPs). The Ag NPs can hetero-aggregate with PS MPs through electrostatic interactions with O-containing groups (C-O, C-OH and CO), and co-precipitate from the water phase. This hetero-aggregation can stabilize Ag NPs by inhibiting Ag NPs surface photooxidation and suppressing Ag release. Transformation of Ag species (from Ag to Ag NPs) mediated by sunlight with PS MPs significantly suppressed acute toxicity of Ag to Escherichia coli, Selenastrum capricornutum, Daphnia magna and zebrafish. This study emphasized that PS MPs play an important role in the speciation, migration and toxicity of Ag in freshwater environments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.126429DOI Listing
October 2021

Microparticles and microplastics released from daily use of plastic feeding and water bottles and plastic injectors: potential risks to infants and children in China.

Environ Sci Pollut Res Int 2021 Nov 19;28(42):59813-59820. Epub 2021 Jun 19.

Collaborative Innovation Center of Water Security for Water Source Region of the Midline of the South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang, 473061, China.

Daily use of plastic feeding and water bottles occur widely in China, and they could be sources for release of microplastics (MPs), which threaten the health of Chinese infants and children during daily usage. In this work, we investigated the use of polycarbonate (PC) and polypropylene (PP) for making water bottles (WBs) and polyphenylene sulfone resins (PPSU) for making feeding bottles (FBs), and we found that feeding bottles and water bottles released microparticles in amounts ranging from 53 to 393 particles/mL during 100 opening/closing cycles. The good linear regressions for plots of microparticles released vs. abrasion distance (r = 0.811) indicated that thick-necked bottles release more microparticles than thin-necked bottles. The brands and types of bottles (plastic vs. glass) influence microparticle release, and this indicates that high-quality plastic and glass bottles release fewer microparticles and are good for the health of infants and children. In addition to calcium stearate and silicone additives, the identified MPs account for 7.5 to 42.1% of released microparticles with different polymer types, sizes (from 20 to 500 μm) and shapes (cubic, spherical and irregular shapes). Additionally, an average of 1.74 MPs were released from an injection with a single-use plastic injector. Nevertheless, a number of microparticles and nanosized plastics were observed with all samples, suggesting that the health risks of micro- and nanosized particles to humans, especially babies and children, and the environment should be considered seriously.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-14939-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8214457PMC
November 2021

Transcriptome analysis reveals potential function of long non-coding RNAs in 20-hydroxyecdysone regulated autophagy in Bombyx mori.

BMC Genomics 2021 May 22;22(1):374. Epub 2021 May 22.

China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 473061, Nanyang, Henan, China.

Background: 20-hydroxyecdysone (20E) plays important roles in insect molting and metamorphosis. 20E-induced autophagy has been detected during the larval-pupal transition in different insects. In Bombyx mori, autophagy is induced by 20E in the larval fat body. Long non-coding RNAs (lncRNAs) function in various biological processes in many organisms, including insects. Many lncRNAs have been reported to be potential for autophagy occurrence in mammals, but it has not been investigated in insects.

Results: RNA libraries from the fat body of B. mori dissected at 2 and 6 h post-injection with 20E were constructed and sequenced, and comprehensive analysis of lncRNAs and mRNAs was performed. A total of 1035 lncRNAs were identified, including 905 lincRNAs and 130 antisense lncRNAs. Compared with mRNAs, lncRNAs had longer transcript length and fewer exons. 132 lncRNAs were found differentially expressed at 2 h post injection, compared with 64 lncRNAs at 6 h post injection. Thirty differentially expressed lncRNAs were common at 2 and 6 h post-injection, and were hypothesized to be associated with the 20E response. Target gene analysis predicted 6493 lncRNA-mRNA cis pairs and 42,797 lncRNA-mRNA trans pairs. The expression profiles of LNC_000560 were highly consistent with its potential target genes, Atg4B, and RNAi of LNC_000560 significantly decreased the expression of LNC_000560 and Atg4B. These results indicated that LNC_000560 was potentially involved in the 20E-induced autophagy of the fat body by regulating Atg4B.

Conclusions: This study provides the genome-wide identification and functional characterization of lncRNAs associated with 20E-induced autophagy in the fat body of B. mori. LNC_000560 and its potential target gene were identified to be related to 20-regulated autophagy in B. mori. These results will be helpful for further studying the regulatory mechanisms of lncRNAs in autophagy and other biological processes in this insect model.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12864-021-07692-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8140452PMC
May 2021

Microplastic contamination is ubiquitous in riparian soils and strongly related to elevation, precipitation and population density.

J Hazard Mater 2021 06 19;411:125178. Epub 2021 Jan 19.

CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China. Electronic address:

Although environmental research has recently begun to focus on the ubiquity of microplastics in terrestrial systems, there is still lack of comprehensive data which describe microplastics levels in soils and the factors influencing the distribution of this contaminant. Here, we show that microplastics contamination (3877 ± 2356 p kg) is omnipresent in numerous soil samples collected along the Yangtze River. Subsoils (4005 ± 2472 p kg) showed higher levels of microplastics than topsoils (3748 ± 2301 p kg), while polyamide (32%) was the most commonly found polymer in the samples. Small microplastics particles (< 200 µm) accounted for approximately 70% of the microplastics detected in subsoils. In terms of shape, microfragments were the most common type of microplastic particle, accounting for 34% of total microplastics, followed by microfibers (30%). Furthermore, microplastics contamination was found to be positively correlated with both the population of the study area and precipitation, yet negatively correlated with the elevation of the sampling site. Our study represents the first large-scale study of microplastic contamination in riparian soils along the Yangtze River, and provides important data regarding the ecotoxicology and ecosystem effects of microplastics in terrestrial environments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.125178DOI Listing
June 2021

Mechanisms of Enterobacter bugandensis TJ6 immobilization of heavy metals and inhibition of Cd and Pb uptake by wheat based on metabolomics and proteomics.

Chemosphere 2021 Aug 4;276:130157. Epub 2021 Mar 4.

Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China. Electronic address:

Microbial passivation remediation of heavy metal-contaminated farmland has attracted increasing attention. However, the molecular mechanism by which heavy metal-immobilizing bacteria inhibit the uptake of Cd and Pb by wheat is not clear. Herein, a heavy metal-immobilizing bacterium, Enterobacter bugandensis TJ6, was used to reveal its immobilization mechanisms of Cd and Pb and inhibition of Cd and Pb uptake by wheat using metabolomics and proteomics. Compared with the control, strain TJ6 significantly reduced (44.7%-56.6%) the Cd and Pb contents of wheat roots and leaves. Strain TJ6 reduced the Cd and Pb concentrations by adsorption, intracellular accumulation, and bioprecipitation in solution. Untargeted metabolomics showed that strain TJ6 produced indole-3-acetic acid (IAA), betaine, and arginine under Cd and Pb stress, significantly improving the resistance of strain TJ6 and wheat to Cd and Pb. Label-free proteomics showed that 143 proteins were upregulated and 61 proteins were downregulated in wheat roots in the presence of strain TJ6. The GO items of the differentially expressed proteins (DEPs) involved in protein-DNA complexes, DNA packaging complexes, and peroxidase activity were enriched. In addition, the ability of wheat roots to synthesize abscisic acid and jasmonic acid was improved. In conclusion, strain TJ6 reduced Cd and Pb uptake in wheat through its own adsorption of Cd and Pb and regulation of wheat root DNA repair ability, plant hormone levels, and antioxidant activities. These results provide new insights and a theoretical basis for the application of heavy metal-immobilizing bacteria in safe wheat production.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.130157DOI Listing
August 2021

Characterization of two newly emerged torque teno sus virus isolates from a large-scale pig farm in China, in 2018.

Res Vet Sci 2021 May 9;136:18-24. Epub 2021 Jan 9.

State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China. Electronic address:

Torque teno sus virus (TTSuV) infection is common in China's pig herd. Although of uncertain pathogenicity, TTSuVs have been reported as a worsening factor of other porcine diseases, including porcine circovirus associated disease (PCVAD), porcine respiratory diseases complex (PRDC) or porcine dermatitis and nephropathy syndrome (PDNS). To better understand the genetic diversity in TTSuVs, the complete genomes of two newly emerged isolates, referred to as HeN1-A9 and HeN1-A11, collected from pig samples at a large-scale pig farm in China, were analyzed. Phylogenetic relationships of TTSuV sequences separated TTSuV1 and TTSuVk2a groups and divided TTSuV1 into two major subtypes, including TTSuV1a and TTSuV1b; HeN1-A9 and HeN1-A11 strains classified into the TTSuV1a subtype. Recombination analysis demonstrated HeN1-A9 and HeN1-A11 were generated via recombination in the overlapping ORF1/ORF3 region of TTSuV1a genome, which we report for the first time. Furthermore, we found that HeN1-A9 could be replicated in cultured MARC-145 cells for 18 passages. Our findings may be useful for elucidating the characteristics and epidemic status of TTSuVs in China.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rvsc.2021.01.008DOI Listing
May 2021

Effects of tetracycline on nitrogen and carbon cycling rates and microbial abundance in sediments with and without biochar amendment.

Chemosphere 2021 May 31;270:129509. Epub 2020 Dec 31.

CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang, 473061, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China. Electronic address:

Nitrogen (N) and carbon (C) biogeochemical processes, such as denitrification and organic matter decomposition, are critical in determining ecological functions in aquatic environments. The overuse of antibiotics in human and veterinary medicine has resulted in the ubiquitous presence of these contaminants in lakes, rivers and other water bodies worldwide. However, the effects of antibiotic residues on N and C cycling processes and associated microbial communities are not well understood. Here, 44-day incubation experiments were conducted to examine the impact of tetracycline on nitrification, denitrification, and CO and CH emissions in sediments with and without biochar addition. Our results showed that tetracycline residues in sediments reached a maximum on the 5th day and then decreased gradually. Throughout incubation, there was no significant difference in sediment N and C cycling rates between control and tetracycline alone treatment. However, the tetracycline + biochar treatment significantly enhanced sediment denitrification rate and the emission of CO and CH. The abundance of N- and C-cycling genes and 16s rRNA gene was significantly reduced by tetracycline exposure only on the 5th day. Furthermore, the relative abundance of several antibiotic resistance genes (ARGs) and class 1 integron-integrase gene (intl1) in sediments was significantly increased after tetracycline exposure. Our findings suggest that, although non-therapeutic concentrations of tetracycline seems to have no adverse effect on sediment N and C cycling rates, the residual tetracycline can reduce sediment microbial abundance in short term and may promote the proliferation of ARGs in long term.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.129509DOI Listing
May 2021

Genetic Characterisation and Local Genotypes of Canine Parvovirus Strains Collected from Pet Dogs in Central and Eastern China During 2018-2019.

J Vet Res 2020 Dec 19;64(4):477-486. Epub 2020 Nov 19.

College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China.

Introduction: Canine parvovirus type-2 (CPV-2) causes acute infectious diseases in puppies, which show high morbidity and mortality. Better effect of vaccination against these diseases could be achieved with deeper knowledge of CPV-2 genotype dissemination and mutation history. This study investigated CPV-2-positive samples collected recently over a wide region of China.

Material And Methods: A total of 118 faecal samples from dogs identified as CPV-positive were collected from veterinary clinics in central and eastern China. Overall, 16 strains collected from Anhui, 29 from Henan, and 16 from Zhejiang Province were sequenced to determine the genotypic composition of CPV-2 and mutational complexity of CPV-VP2.

Results: The CPV-2a, CPV-2b, and CPV-2c genotypes were detected in Anhui and Henan Provinces, while CPV-2c alone was detected in Zhejiang Province. Sequence analysis of all strains showed 98.5%-99.8%, 98.3%-99.9%, and 98.7%-99.8% identity among the 16 Anhui, 29 Henan, and 16 Zhejiang strains, respectively. Strains collected from Anhui and Henan Provinces showed lower identity (97.0%), suggesting greater genetic divergence in central China. The mutation rates of Henan and Anhui strains were lower than that of Zhejiang strains. Major amino acid mutations occurred at sites 5, 370, 426, and 440. Epitope and entropy analyses implied these sites' likely conformance to the principles of mutation tendency, complexity, and diversity.

Conclusion: The findings for the evolutionary structure of CPV-2 strains collected from three provinces in central and eastern China advance trend monitoring of the genetic variation in canine parvovirus and point to its implications in the development of novel vaccines.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2478/jvetres-2020-0076DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7734690PMC
December 2020

Simple and Visible Detection of Novel Astroviruses Causing Fatal Gout in Goslings Using One-Step Reverse Transcription Polymerase Spiral Reaction Method.

Front Vet Sci 2020 10;7:579432. Epub 2020 Dec 10.

College of Animal Science, South China Agricultural University, Guangzhou, China.

In this study, a one-step isothermal method combining polymerase spiral reaction (PSR) with reverse transcription (RT-PSR) was established for rapid and specific detection of novel astroviruses causing fatal gout in goslings (N-GoAstV). The one-step RT-PSR was accomplished at the optimal temperature of 62°C and time of 40 min and used primers simply designed as conventional PCR primers, and the results of detection were visible to the naked eye. The detection limit of PSR was above 34.7 copies/μL at a 95% probability level according to probit regression analysis. The assay specifically detected N-GoAstV, and no other reference viruses were detected. These results suggest that the newly established RT-PSR assay could, in one step, accomplish reverse-transcription, amplification, and result determination providing a visible, convenient, rapid, and cost-effective test that can be carried out onsite, in order to ensure timely quarantine of N-GoAstV-infected birds, leading to effective disease control.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fvets.2020.579432DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7758545PMC
December 2020

Genetic Analysis of Cachavirus-Related Parvoviruses Detected in Pet Cats: The First Report From China.

Front Vet Sci 2020 23;7:580836. Epub 2020 Nov 23.

College of Animal Science, South China Agricultural University, Guangzhou, China.

In this study, members of the , closely related to a virus previously reported in dog feces named cachavirus was identified for the first time in feces of Chinese cats. Screening tests using rectal swabs from 171 diarrheic and 378 healthy cats collected from Henan, Anhui, and Zhejiang provinces in China revealed two samples from diarrheic cats that were positive for cachavirus, but statistical analysis indicated no association between the presence of the virus and clinical signs ( > 0.05). Subsequently, two partial genome sequences [from nucleotides 479-4123, according to the strains from dogs (cachavirus)] of the two strains from cats (cachavirus-cat1 and -cat2) were amplified. The NS1 and VP1 sites of cachavirus-cat1 and -cat2 shared a high identity of 91.9 and 97.0% with reported cachaviruses, respectively, but lower identity of 74.8 and 73.2% with another carnivore chaphamaparvovirus named fechaviruses detected in cats, respectively, indicated the two strains might origin from dogs. These findings improve our understanding of the diversity and tropism of viruses in which now include both dogs and now cats viruses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fvets.2020.580836DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7719813PMC
November 2020

An Improved Polymerase Cross-Linking Spiral Reaction Assay for Rapid Diagnostic of Canine Parvovirus 2 Infection.

Front Vet Sci 2020 30;7:571629. Epub 2020 Oct 30.

College of Animal Science, South China Agricultural University, Guangzhou, China.

With increasing complications of canine parvovirus infection cases, disease diagnosis and treatment have become more difficult. In this study, specificity primers for the conserved region of the VP2 gene of canine parvovirus 2 (CPV-2) were synthesized and evaluated. An improved polymerase cross-linking spiral reaction (PCLSR) method for early and rapid diagnosis of CPV-2 was established. The results showed that the amplification reaction was optimal when run at 62°C for 50 min and could be used to detect CPV-2 without any cross-reactions with other pathogens of canine infectious diseases. Reaction results were directly judged by the naked eyes, with the positive amplification tube shown as luminous yellow and the negative tube as bright purple. Compared with the previously reported polymerase spiral reaction (PSR) method for CPV-2 detection, this reaction was performed using improved primer pairs and a better dye identification method (using an indicator comprising phenol red and cresol red). The detection limit of PCLSR was 3.9 × 10 copies using gel electrophoresis or a visible dye. The positive rate of 132 clinical samples was 42.42%, which was identically the same as that of the PSR method and slightly higher than that of the colloidal gold strip method (39.39%). The newly developed CPV-PCLSR assay shows the advantage of rapid visualization of results and offers a convenient and rapid method for early CPV-2 diagnosis with higher sensitivity and specificity than the established methods.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fvets.2020.571629DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7661784PMC
October 2020

Molecular Characterisation and Genetic Diversity of Canine Parvovirus Type 2 Prevalent in Central China.

J Vet Res 2020 Sep 16;64(3):347-354. Epub 2020 Sep 16.

College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China.

Introduction: Canine parvovirus (CPV) disease is one of the most threatening to domestic and wild dogs.

Material And Methods: A total of 132 clinical samples were isolated from domestic dogs with diarrhoea from Henan, Hubei, Jiangsu, and Anhui provinces from 2016 to 2017, and 56 were positive for CPV-2 by PCR. A phylogenetic tree was constructed for the isolate sequences incorporating 53 non-Chinese reference strains.

Results: VP2 sequences showed the strains mainly to be new CPV-2a/2b and CPV-2c genotypes. The Ala5Gly, Phe267Tyr, Ser297Ala, Tyr324Ile, Gln370Arg, Asn426Asp or Asn426Glu, and Thr440Ala sites in the VP2 protein antigenic region were found to have high mutation rates. The VP2 tertiary structural model shows that the change at these mutation points is a factor for the changes in the protein structure. Significant differences between the Central Chinese strains and others were found, indicating that evolution is geographically related and extended in major regions. The homology between the identified strains confirmed their relationship. Phylogenetic analysis indicated that the common genotypes in the same clusters differ slightly in homology and evolutionary history.

Conclusion: This epidemiological study enriches the available data and serves as an important reference for studies on the evolution of CPV and selection of vaccines in China.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2478/jvetres-2020-0056DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497761PMC
September 2020

Novel Genotype Definition and the First Epidemiological Investigation of Canine Adenovirus Type 2 in Dogs in Central China.

Front Vet Sci 2020 19;7:534. Epub 2020 Aug 19.

College of Animal Science, South China Agricultural University, Guangzhou, China.

Infections caused by canine adenovirus (CAdV) type 1 have been reported worldwide in the past two decades. However, only few studies have specifically reported the prevalence of CAdV type 2 (CAdV-2). The present study investigated the persistent circulation of CAdV-2 in dogs with diarrhea in the Henan, Hubei, and Jiangsu provinces in central China from 2017 to 2019. We conducted polymerase chain reaction for detecting CAdV-2 and other related pathogens in 224 rectal swabs of pet dogs and the co-infection of canine diseases was also analyzed. In addition, the structural protein genes-Fiber, Hexon, and Penton-of the isolated CAdV-2 strains were sequenced and analyzed. The similarity between and among the 19 strains was 97.4%, as revealed by sequence alignment. Multiple sequence alignment results showed that the gene sequences of these CAdV-2 strains shared 97.4-99.8% nucleotide and 94.1-99.3% amino acid identity with reference sequences and shared only 79.0-80.5% nucleotide and 77.3-80.5% amino acid identity with the vaccine strain CLL, indicating that Fiber harbored most of the variant sites. Furthermore, pairwise sequence comparisons of of CH-JS-1901 and CH-HN-1801 with that of India2006 revealed a novel genotype. Furthermore, protein model prediction showed that the amino acid mutation of fiber protein in 19 strains was located in the head region, that may cause structural changes on the surface of the fiber protein. These findings are of significance for monitoring the epidemiology of CAdV-2 infection and developing a novel vaccine which contribute to understanding genetic evolution of CAdV-2 in China.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fvets.2020.00534DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466760PMC
August 2020

Enhanced biomass production and pollutant removal by duckweed in mixotrophic conditions.

Bioresour Technol 2020 Dec 19;317:124029. Epub 2020 Aug 19.

The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China. Electronic address:

Duckweed is a potential biomass source for alternative energy production. This work reports the effects of trophic modes on growth rates, biomass accumulation, and removal rates of pollutant by duckweed. Glucose, fructose, galactose, sucrose, and maltose all supported heterotrophic and mixotrophic growth of duckweed. The mixotrophic growth rate was 4.98 and 6.22 times higher than those in heterotrophic and photoautotrophic conditions, respectively. Notably, mixotrophy produced more biomass than the simple sum of the biomass accumulation during heterotrophy and photoautotrophy. Mixotrophy was also superior in starch and protein production, as well as in removal rates of nutrients and organic carbon from the growth medium. However, the starch content of duckweed grown heterotrophically was 2.06 times higher than in mixotrophy, suggesting a combination of mixotrophy and heterotrophy as an effective strategy for starch-rich biomass production. This study thus provides a paradigm for future studies supporting duckweed-based biomass production and organic wastewater treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2020.124029DOI Listing
December 2020

Rapid and visual detection of novel astroviruses causing fatal gout in goslings using one-step reverse transcription loop-mediated isothermal amplification.

Poult Sci 2020 Sep 20;99(9):4259-4264. Epub 2020 Jun 20.

College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China.

To visually and rapidly detect a novel goose astrovirus (N-GoAstV) causing fatal gout in goslings, an isothermal detection method based on one-step reverse transcription loop-mediated isothermal amplification (one-step RT-LAMP) was established. The one-step RT-LAMP assay for N-GoAstV detection, using Bst 3.0 DNA polymerase with strong reverse transcription activity and primer sets targeting the opening reading frame 1b (ORF1b) of N-GoAstV, could be completed in 30 min using a water bath at 61°C; the detection results could be visually observed by adding a pH-sensitive dye containing phenol red and cresol red. The detection limit of the one-step RT-LAMP assay was 57.8 copies, which was similar to that of reverse transcription-quantitative polymerase chain reaction. The assay specifically detected N-GoAstV without any cross-reaction with other reference viruses, and this was further confirmed using enzyme digestion. These results indicated that the newly established RT-LAMP assay could accomplish reverse transcription, amplification, and visual result determination in one step, and the results obtained via this rapid and cost-effective method could be used to support disease control on farms in terms of N-GoAstV infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.psj.2020.05.024DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7305742PMC
September 2020

Heavy metal-immobilizing bacteria combined with calcium polypeptides reduced the uptake of Cd in wheat and shifted the rhizosphere bacterial communities.

Environ Pollut 2020 Dec 18;267:115432. Epub 2020 Aug 18.

Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China. Electronic address:

In situ stabilization techniques for the "remediation" of heavy metal-contaminated soil are a novel and inexpensive technology. However, the mechanisms underlying the interaction of exogenous passivators with the bacterial community in wheat rhizosphere soil remain unclear. Soil static culture and pot experiments were conducted to evaluate the effects and mechanisms of the heavy metal-immobilizing bacterium Enterobacter bugandensis TJ6 and calcium polypeptides (CPPs) and their association with Cd uptake in wheat, soil quality and the rhizobacterial community structure. The results showed that compared with the control treatment (CK), the TJ6, CPP, and TJ6+CPP treatments significantly decreased the diethylenetriaminepentaacetic acid (DTPA)-extractable Cd (25.2%-60.1%) content and increased the pH, organic matter content and urease activity in the wheat rhizosphere soil, which resulted in decreases in the Cd (21.5%-77.8%) content in wheat tissues (grain, straw, and roots). In particular, the TJ6+CPP treatment was more effective at decreasing Cd accumulation in grains. Furthermore, the TJ6+CPP treatment improved the diversity of the soil bacterial community in the wheat rhizosphere, and the relative abundances of Proteobacteria, Firmicutes, Arthrobacter, Microvirga, Ensifer, Brevundimonas, Devosia and Pedobacter were enriched. These results suggest that the TJ6+CPP treatment decreased the uptake of Cd in wheat by i) providing essential elements (N and C sources), ii) increasing the pH and reducing the bioavailable Cd content in wheat rhizosphere soil, iii) allowing colonization to promote plant growth and Cd-resistant bacteria, and iv) increasing the abundance of genes associated with ABC transporters, carbon metabolism and oxidative phosphorylation in the rhizosphere bacterial community. Our results showed that the heavy metal-immobilizing bacterium TJ6 combined with CPPs decreased the Cd content and increased the bacterial community diversity of wheat rhizosphere soil. Our results also highlight the potential of using heavy metal-immobilizing bacteria and CPPs to ensure the safe production of crops growing on heavy metal-polluted soils.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2020.115432DOI Listing
December 2020

Study of the immunogenicity of the VP2 protein of canine parvovirus produced using an improved Baculovirus expression system.

BMC Vet Res 2020 Jun 18;16(1):202. Epub 2020 Jun 18.

Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, School of Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China.

Background: Canine parvovirus (CPV) is now recognized as a serious threat to the dog breeding industry worldwide. Currently used CPV vaccines all have their specific drawbacks, prompting a search for alternative safe and effective vaccination strategies such as subunit vaccine. VP2 protein is the major antigen targeted for developing CPV subunit vaccine, however, its production in baculovirus expression system remains challenging due to the insufficient yield. Therefore, our study aims to increase the VP2 protein production by using an improved baculovirus expression system and to evaluate the immunogenicity of the purified VP2 protein in mice.

Results: The results showed that high-level expression of the full length VP2 protein was achieved using our modified baculovirus expression system. The recombinant virus carrying two copies of VP2 gene showed the highest expression level, with a productivity of 186 mg/L, which is about 1.4-1.6 fold that of the recombinant viruses carrying only one copy. The purified protein reacted with Mouse anti-His tag monoclonal antibody and Rabbit anti-VP2 polyclonal antibody. BALB/c mice were intramuscularly immunized with purified VP2 protein twice at 2 week intervals. After vaccination, VP2 protein could induce the mice produce high level of hemagglutination inhibition antibodies.

Conclusions: Full length CPV VP2 protein was expressed at high level and purified efficiently. Moreover, it stimulated mice to produce high level of antibodies with hemmaglutination inhibition properties. The VP2 protein expressed in this study could be used as a putative economic and efficient subunit vaccine against CPV infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12917-020-02422-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7301529PMC
June 2020

Novel genotype definition and genome characteristics of duck circovirus in central and Eastern China.

Transbound Emerg Dis 2020 Nov 24;67(6):2993-3004. Epub 2020 Jun 24.

College of Animal Science, South China Agricultural University, Guangzhou, PR China.

To explore genetic variations in duck circovirus (DuCV) and the molecular epidemiology of its infection, tissue samples were collected from 219 dead ducks from 20 farms in the central and eastern regions of China. All farms tested positive for DuCV, with duck-origin goose parvovirus, reovirus and Tembusu virus having co-infection rates of 100%, 0% and 0%, respectively. A total of 20 strains from the DuCV-positive flock were sequenced. The total sequence length was 1987-1996 nt, and the sequences shared 82% (JX499186, DuCV2 from Sichuan province, China) to 99.7% (KY328304, DuCV1 from Shandong Province, China) sequence identity with DuCV sequences available in GenBank. Hyper-variable regions were mainly located in open reading frame (ORF)2, ORF3 and intergenic regions. The tertiary structure of ORF2 from four provinces (Henan, Anhui, Zhejiang and Fujian) in China showed a canonical viral jelly roll and the antigenic epitope of ORF2 located in the bulge of the protein surface. Overall, 15 of the 20 DuCV strains are possibly derived through inter-genotypic and intragenotypic recombination. Based on sequence and phylogenetic analyses, six strains from Fujian Province clustered into a novel genotype-DuCV-1d. These findings may enrich our understanding of DuCV evolution and circulation and lay the foundation for vaccine strain selection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/tbed.13676DOI Listing
November 2020

Epidemiological investigation of avian infectious bronchitis and locally determined genotype diversity in central China: a 2016-2018 study.

Poult Sci 2020 Jun 10;99(6):3001-3008. Epub 2020 Apr 10.

College of Animal Science, South China Agricultural University, Guangzhou 510642, P.R. China.

Infectious bronchitis (IB), caused by avian IB virus (IBV), is an acute and highly contagious disease of chickens. From 2016 to 2018, 56 IBV strains were isolated and identified from clinical samples obtained from various chicken farms located in central China. The S1 sequencing of these strains revealed nucleotide and amino acid identities of 70.2 to 100% and 62.6 to 100%, respectively, compared with those of reference strains. Phylogenetic analysis indicated that the genotypes of the isolates included GI-13 (4/91), GI-7 (TW-I), GI-24 (Mass), GI-19 (QX), and GI-18 (LDT3-A), with GI-19 (QX) being the predominant genotype. Meanwhile, GI-13 (4/91) was the second most dominant genotype in Henan Province, whereas it was GI-7 (TW-I) in Hunan and Hubei provinces. Recombination analysis of 3 variant strains showed that CK/CH/HeN/20160113 might be a recombination of LDT3-A- and QX-type strains and that CK/CH/HeN/20160316 might be a recombination of Italy-02-type strain and CK-CH-LJS08II. The predicted tertiary structure between CK/CH/HeN/20160113 and LDT3-A-type strain revealed that the novel 336 (L-P) and 455 (S-A) mutations changed the structure from an alpha helix to a random crimp. In addition, the 275 (Y-F) site reduced the length of the β-sheet, whereas the site 353 (A-T) extended the β-sheet. These findings suggested that GI-19 (QX) remains the predominant genotype in central China, and a locally determined complex genotype associated with variable clinical symptoms exists related to gene recombination and mutations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.psj.2020.03.023DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597734PMC
June 2020

The use of artificial neural network (ANN) for modeling adsorption of sunset yellow onto neodymium modified ordered mesoporous carbon.

Chemosphere 2020 Oct 15;256:127081. Epub 2020 May 15.

Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA, 70504, USA; Center of Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA. Electronic address:

Discharging coloring products in water bodies has degraded water quality irreversibly over the past several decades. Order mesoporous carbon (OMC) was modified by embedding neodymium(III) chloride on the surface of OMC to enhance the adsorptive removal towards these contaminants. This paper represents an artificial neural network (ANN) based approach for modeling the adsorption process of sunset yellow onto neodymium modified OMC (OMC-Nd) in batch adsorption experiments. Neodymium modified OMC was characterized using N adsorption-desorption isotherm, TEM micrographs, FT-IR and XPS spectra analysis techniques. 2.5 wt% Nd loaded OMC was selected as the final adsorbent for further experiments because OMC-2.5Nd showed highest removal efficiency of 93%. The ANN model was trained and validated with the adsorption experiments data where initial concentration, reaction time, and adsorbent dosage were selected as the variables for the batch study, whereas the removal efficiency was considered as the output. The ANN model was first developed using a three-layer back propagation network with the optimum structure of 3-6-1. The model employed tangent sigmoid transfer function as input in the hidden layer whereas a linear transfer function was used in the output layer. The comparison between modeled data and experimental data provided high degree of correlation (R = 0.9832) which indicated the applicability of ANN model for describing the adsorption process with reasonable accuracy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.127081DOI Listing
October 2020

A chromosome-scale genome assembly of Antheraea pernyi (Saturniidae, Lepidoptera).

Mol Ecol Resour 2020 Sep 20;20(5):1372-1383. Epub 2020 Aug 20.

QianTang Biotech Co.,Ltd, Suzhou, China.

Antheraea pernyi is a semi-domesticated lepidopteran insect species valuable to the silk industry, human health, and ecological tourism. Owing to its economic influence and developmental properties, it serves as an ideal model for investigating divergence of the Bombycoidea super family. However, studies on the karyotype evolution and functional genomics of A. pernyi are limited by scarce genomic resource. Here, we applied PacBio sequencing and chromosome structure capture technique to assemble the first high-quality A. pernyi genome from a single male individual. The genome is 720.67 Mb long with 49 chromosomes and a 13.77-Mb scaffold N50. Approximately 441.75 Mb, accounting for 60.74% of the genome, was identified as repeats. The genome comprises 21,431 protein-coding genes, 85.22% of which were functionally annotated. Comparative genomics analysis suggested that A. pernyi diverged from its common ancestor with A. yamamai ~30.3 million years ago, and that chromosome fission contributed to the increased chromosome number. The genome assembled in this work will not only facilitate future research on A. pernyi and related species but also help to progress comparative genomics analyses in Lepidoptera.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/1755-0998.13199DOI Listing
September 2020

Adsorption of Pb onto freeze-dried microalgae and environmental risk assessment.

J Environ Manage 2020 Jul 11;265:110472. Epub 2020 Apr 11.

Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang, 473061, China; Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang, 473061, China.

Dry microalgae Spirulina platensis shows a high capacity for heavy metal uptake, but there is a concern about dissolved organic carbon (DOC) residue, which is the precursor of disinfection by-products (DBPs). Vsp, a kind of Spirulina platensis powder prepared by vacuum freeze-drying, and Osp, a kind of Spirulina platensis powder prepared by the conventional oven drying-pulverization method, were subjected to assessments of their adsorption potential for Pb and DOC residue. The adsorption mechanism of Pb by the two adsorbents was studied by SEM, FT-IR, EDX and N-BET. The effects of pH, adsorbent dosage, initial Pb concentration and contact time on the biosorption process were investigated. The results showed that Pb biosorption by Vsp and Osp were fit well by a pseudo-second-order kinetic model and the Langmuir model. The maximum amount of Pb biosorption by Vsp was 253 mg/g, which was 33 mg/g greater than that of Osp. In comparison with Osp, Vsp reached adsorption saturation 8 h earlier and had a remarkable effect on the control of DOC residue in water. When both adsorption capacity and environmental risks were considered, it was determined that the dosage of 0.5 g/L Vsp for 2 h of contact time was the best method, with 85.89 mg/g of Pb removal and 3.45 mg/L of DOC residue. In summary, Vsp is a highly efficient and environmentally friendly biosorbent that can be used for heavy metal removal from water.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2020.110472DOI Listing
July 2020

Screening of Heavy Metal-Immobilizing Bacteria and Its Effect on Reducing Cd and Pb Concentrations in Water Spinach ( Forsk.).

Int J Environ Res Public Health 2020 04 30;17(9). Epub 2020 Apr 30.

Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China.

Microbial immobilization is considered as a novel and environmentally friendly technology that uses microbes to reduce heavy metals accumulation in plants. To explore microbial resources which are useful in these applications, three water spinach rhizosphere soils polluted by different levels of heavy metals (heavy pollution (CQ), medium pollution (JZ), and relative clean (NF)) were collected. The community composition of heavy metal-immobilizing bacteria in rhizosphere soils and its effects on reducing the Cd and Pb concentrations in water spinach were evaluated. Four hundred strains were isolated from the CQ (belonging to 3 phyla and 14 genera), JZ (belonging to 4 phyla and 25 genera) and NF (belonged to 6 phyla and 34 genera) samples, respectively. In the CQ sample, 137 strains showed a strong ability to immobilize Cd and Pb, giving Cd and Pb removal rates of greater than 80% in solution; , , and were the main genera. In total, 62 strains showed a strong ability to immobilize Cd and Pb in the JZ sample and and were the main genera. A total of 22 strains showed a strong ability to immobilize Cd and Pb in the NF sample, and was the main genus. Compared to the control, CQ-7, CQ-33, and CQ-169 significantly increased the dry weight (17.16-148%) of water spinach and reduced the contents of Cd (59.78-72.41%) and Pb (43.36-74.21%) in water spinach. Moreover, the soluble protein and Vc contents in the shoots of water spinach were also significantly increased (72.1-193%) in the presence of strains CQ-7, CQ-33 and CQ-169 compared to the control. In addition, the contents of Cd and Pb in the shoots of water spinach meet the standard for limit of Cd and Pb in vegetables in the presence of strains CQ-7, CQ-33 and CQ-169. Thus, the results provide strains as resources and a theoretical basis for the remediation of Cd- and Pb-contaminated farmlands for the safe production of vegetables.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijerph17093122DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7246948PMC
April 2020
-->