Publications by authors named "Luke O Russell"

2 Publications

  • Page 1 of 1

Stromal Platelet-Derived Growth Factor Receptor-β Signaling Promotes Breast Cancer Metastasis in the Brain.

Cancer Res 2021 Feb 23;81(3):606-618. Epub 2020 Apr 23.

The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.

Platelet-derived growth factor receptor-beta (PDGFRβ) is a receptor tyrosine kinase found in cells of mesenchymal origin such as fibroblasts and pericytes. Activation of this receptor is dependent on paracrine ligand induction, and its preferred ligand PDGFB is released by neighboring epithelial and endothelial cells. While expression of both PDGFRβ and PDGFB has been noted in patient breast tumors for decades, how PDGFB-to-PDGFRβ tumor-stroma signaling mediates breast cancer initiation, progression, and metastasis remains unclear. Here we demonstrate this paracrine signaling pathway that mediates both primary tumor growth and metastasis, specifically, metastasis to the brain. Elevated levels of PDGFB accelerated orthotopic tumor growth and intracranial growth of mammary tumor cells, while mesenchymal-specific expression of an activating mutant PDGFRβ (PDGFRβ) exerted proproliferative signals on adjacent mammary tumor cells. Stromal expression of PDGFRβ also promoted brain metastases of mammary tumor cells expressing high PDGFB when injected intravenously. In the brain, expression of PDGFRβ was observed within a subset of astrocytes, and aged mice expressing PDGFRβ exhibited reactive gliosis. Importantly, the PDGFR-specific inhibitor crenolanib significantly reduced intracranial growth of mammary tumor cells. In a tissue microarray comprised of 363 primary human breast tumors, high PDGFB protein expression was prognostic for brain metastases, but not metastases to other sites. Our results advocate the use of mice expressing PDGFRβ in their stromal cells as a preclinical model of breast cancer-associated brain metastases and support continued investigation into the clinical prognostic and therapeutic use of PDGFB-to-PDGFRβ signaling in women with breast cancer. SIGNIFICANCE: These studies reveal a previously unknown role for PDGFB-to-PDGFRβ paracrine signaling in the promotion of breast cancer brain metastases and support the prognostic and therapeutic clinical utility of this pathway for patients..
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-19-3731DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7581545PMC
February 2021

Faster replication and higher expression levels of viral glycoproteins give the vesicular stomatitis virus/measles virus hybrid VSV-FH a growth advantage over measles virus.

J Virol 2014 Aug 14;88(15):8332-9. Epub 2014 May 14.

Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, USA

Unlabelled: VSV-FH is a hybrid vesicular stomatitis virus (VSV) with a deletion of its G glycoprotein and encoding the measles virus (MV) fusion (F) and hemagglutinin (H) envelope glycoproteins. VSV-FH infects cells expressing MV receptors and is fusogenic and effective against myeloma xenografts in mice. We evaluated the fusogenic activities of MV and VSV-FH in relationship to the density of receptor on the target cell surface and the kinetics of F and H expression in infected cells. Using a panel of cells expressing increasing numbers of the MV receptor CD46, we evaluated syncytium size in MV- or VSV-FH-infected cells. VSV-FH is not fusogenic at low CD46 density but requires less CD46 for syncytium formation than MV. The size of each syncytium is larger in VSV-FH-infected cells at a specific CD46 density. While syncytium size reached a plateau and did not increase further in MV-infected CHO cells expressing ≥4,620 CD46 copies/cell, there was a corresponding increase in syncytium size with increases in CD46 levels in VSV-FH-infected CD46-expressing CHO (CHO-CD46) cells. Further analysis in VSV-FH-infected cell lines shows earlier and higher expression of F and H mRNAs and protein. However, VSV-FH cytotoxic activity was reduced by pretreatment of the cells with type I interferon. In contrast, the cytopathic effects are not affected in MV-infected cells. In summary, VSV-FH has significant advantages over MV as an oncolytic virus due to its higher viral yield, faster replication kinetics, and larger fusogenic capabilities but should be used in cancer types with defective interferon signaling pathways.

Importance: We studied the cytotoxic activity of a vesicular stomatitis/measles hybrid virus (VSV-FH), which is superior to that of measles virus (MV), in different cancer cell lines. We determined that viral RNA and protein were produced faster and in higher quantities in VSV-FH-infected cells. This resulted in the formation of larger syncytia, higher production of infectious particles, and a more potent cytopathic effect in permissive cells. Importantly, VSV-FH, similar to MV, can discriminate between low- and high-expressing CD46 cells, a phenotype important for cancer therapy as the virus will be able to preferentially infect cancer cells that overexpress CD46 over low-CD46-expressing normal cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.03823-13DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4135973PMC
August 2014