Publications by authors named "Luiz Gustavo de Almeida Chuffa"

30 Publications

  • Page 1 of 1

Nandrolone decanoate causes uterine injury by changing hormone levels and sex steroid receptors in a dose- and time-dependent manner.

Reprod Toxicol 2021 Jun 10;102:98-108. Epub 2021 May 10.

Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, IBB/UNESP, SP, 16618-689, Brazil. Electronic address:

Different doses of nandrolone decanoate (ND) were used to investigate the expression of uterine sex steroid receptors (AR, ER-α, and ER-β) and the levels of serum sex hormones after treatment and recovery periods in adult rats. ND doses of 1.87, 3.75, 7.5, or 15 mg/kg b.w. or mineral oil (control group) were injected subcutaneously for 15 days, and the experimental groups were divided into three periods of evaluation: (a) ND treatment for 15 days, (b) ND treatment followed by 30-day-recovery and (c) ND treatment followed by 60-day-recovery. Estrous cycle was monitored daily. At the end of each experimental period, rats were euthanized for the collection of serum samples and uterine tissues. All animals showed persistent diestrus and only the highest ND dose was capable of inducing persistent diestrus until 60-day-recovery. Immunoexpression of uterine sex steroid receptors varied in a time-dependent manner. While AR expression was increase after treatment period, ER-α and ER-β expressions decreased after 60- and 30-day-recovery, respectively. ND also increased the serum levels of testosterone, 17β-estradiol, and dihydrotestosterone, especially at the highest doses of 7.5 and 15 mg ND/kg until 30 days of recovery. The levels of progesterone were significantly reduced in all ND-treated animals. No significant difference was observed in the levels of follicle-stimulating hormone, whereas the levels of luteinizing hormone varied according to specific dose and period. We conclude that uterine sex steroid receptors and sex hormones are affected by ND administration and these alterations can be only restored following lower doses and long recovery periods.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.reprotox.2021.05.002DOI Listing
June 2021

Part-time cancers and role of melatonin in determining their metabolic phenotype.

Life Sci 2021 Aug 8;278:119597. Epub 2021 May 8.

Departamento de Biologia Estrutural e Funcional, Instituto de Biociencias, Botucatu, Sao Poalo 18618-689, Brazil.

This brief review describes the association of the endogenous pineal melatonin rhythm with the metabolic flux of solid tumors, particularly breast cancer. It also summarizes new information on the potential mechanisms by which endogenously-produced or exogenously-administered melatonin impacts the metabolic phenotype of cancer cells. The evidence indicates that solid tumors may redirect their metabolic phenotype from the pathological Warburg-type metabolism during the day to the healthier mitochondrial oxidative phosphorylation on a nightly basis. Thus, they function as cancer cells only during the day and as healthier cells at night, that is, they are only part-time cancerous. This switch to oxidative phosphorylation at night causes cancer cells to exhibit a reduced tumor phenotype and less likely to rapidly proliferate or to become invasive or metastatic. Also discussed is the likelihood that some solid tumors are especially aggressive during the day and much less so at night due to the nocturnal rise in melatonin which determines their metabolic state. We further propose that when melatonin is used/tested in clinical trials, a specific treatment paradigm be used that is consistent with the temporal metabolic changes in tumor metabolism. Finally, it seems likely that the concurrent use of melatonin in combination with conventional chemotherapies also would improve cancer treatment outcomes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2021.119597DOI Listing
August 2021

Protein restriction during puberty alters nutritional parameters and affects ovarian and uterine histomorphometry in adulthood in rats.

Int J Exp Pathol 2021 Apr 17;102(2):93-104. Epub 2021 Mar 17.

Department of Structural and Functional Biology, Institute of Biosciences, UNESP - São Paulo State University, Botucatu, São Paulo, Brazil.

In a large part of the population inefficient ingestion of proteins, whether for cultural, aesthetic or economic reasons, is a global concern. Low-protein diets can cause severe functional complications, mainly during the development and maturation of organs and systems, including the female reproductive system. The present study investigated the effect of nutritional protein restriction during puberty on the oestrous cycle and expression of sex steroid receptors (AR, ERα e ERβ) in ovarian and uterine tissues of adult rats. Protein restriction promoted lower body weight gain, feed efficiency and higher caloric intake. There was an increase in the oestrus phase arrest without changing the total length of the oestrous cycle. The consumption of low-protein diet also reduced the thickness of the uterine endometrium (uterine epithelium and endometrial stroma) in addition to increasing the number of primary and atretic follicles in the ovaries. Furthermore, the low-protein diet reduced the levels of androgen receptor (AR) and increased the oestrogen receptor β (ERβ) in the ovary, while no significant changes were observed in the uterus. Our study reinforces the importance of adequate protein intake during puberty, since physiological changes in this developmental period interfere with the histomorphometry of the ovaries and uteri, possibly resulting in impaired folliculogenesis and fertility in the reproductive period.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/iep.12388DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7981593PMC
April 2021

Pterostilbene influences glycemia and lipidemia and enhances antioxidant status in the liver of rats that consumed sucrose solution.

Life Sci 2021 Mar 13;269:119048. Epub 2021 Jan 13.

Department of Biology, Biological Science Center, Universidade Estadual do Norte do Paraná - UENP, Luiz Meneghel Campus, Bandeirantes, Paraná, Brazil; Post Graduation Program of Experimental Pathology, Universidade Estadual de Londrina - UEL, Paraná, Brazil. Electronic address:

Aims: The present study investigated the potential effects of pterostilbene (PT) on glycemic and lipid profiles, fat storage, cardiovascular indices, and hepatic parameters of rats fed with sucrose solution.

Main Methods: 24 male Wistar rats received either drinking water or a 40% sucrose solution over a period of 140 days. After this period, animals were randomly allocated into four groups (n = 6): Control (C), C + Pterostilbene (PT), Sucrose (S), and S + PT. Pterostilbene (40 mg/kg) was given orally for 45 consecutive days.

Key Findings: Pterostilbene did not influence morphometric and nutritional parameters. The insulin sensitivity index TyG was elevated in the C + PT group (p < 0.01) and reduced in S + PT group (p < 0.05). Basal glucose levels were lower in the S + PT group (p < 0.05), and the glycemic response was improved with PT treatment in glucose provocative tests. Conversely, rats from the C + PT group showed impaired glucose disposal during those tests. Lipid profile was partially improved by PT treatment. Hepatic oxidative stress in the S group was improved after PT treatment. In the C group, PT reduced SOD activity, glutathione levels, and increased catalase activity. Collagen content was reduced by PT treatment.

Significance: PT effects depends on the type of diet the animals were submitted. In rats fed with sucrose-solution, PT confirmed its positive effects, improving glucose and lipid profile, and acting as a potent antioxidant. The effects of PT on rats that consumed a normal diet were very discrete or even undesirable. We suggest caution with indiscriminate consume of natural compounds by healthy subjects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2021.119048DOI Listing
March 2021

Melatonin synthesis in and uptake by mitochondria: implications for diseased cells with dysfunctional mitochondria.

Future Med Chem 2021 Feb 5;13(4):335-339. Epub 2021 Jan 5.

Departamento de Morfología y Biología Celular, Facultad de Medicina, c/JulianClaveria, 6, Oviedo 33006, Spain.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4155/fmc-2020-0326DOI Listing
February 2021

Maternal protein restriction impairs nutrition and ovarian histomorphometry without changing p38MAPK and PI3K-AKT-mTOR signaling in adult rat ovaries.

Life Sci 2021 Jan 29;264:118693. Epub 2020 Oct 29.

Department of Structural and Functional Biology, Institute of Biosciences (IBB), São Paulo State University-UNESP, 18618-689, Botucatu, SP, Brazil. Electronic address:

Aims: Because an adequate protein supply is detrimental for the maintenance of folliculogenesis and ovulation, we evaluated the impact of maternal low protein diet on nutritional parameters, estrous cycle, ovarian histomorphometry, and on the expression of metabolic and survival signaling molecules in different follicular stages.

Main Methods: Twenty Wistar pregnant rats were divided into two groups: the normoprotein (NP) group, composed of animals that received 17% protein, and a low-protein (LP) group, composed of animals that received 6% protein during gestation and lactation period. After weaning, female rats were fed with standard diet until the 120-days-old.

Key Findings: LP animals showed reduced body mass index, total body weight, energy intake, feed efficiency, and visceral fat. The ovarian tissue presented vascular congestion and fat accumulation in the medulla, followed by a significant reduction in the amount of primordial and primary follicles. In addition, the number of atretic follicles was higher in LP than in NP animals. Maternal undernutrition also resulted in increased levels of estradiol (E2) and progesterone (P4) while testosterone (T) was unchanged in the offspring. Although discrete changes in p38MAPK and in PI3K-AKT-mTOR immunostaining were observed in the ovarian follicles and corpus luteum in LP, no differences were found at their protein levels.

Significance: Maternal protein restriction alters estrous cycle and histomorphometry of the offspring's ovary without changing the levels of intracellular regulatory molecules in adulthood. These morphofunctional changes may alter reproductive performance in female offspring, highlighting maternal dietary conditions as an important factor for offspring reproductive health.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2020.118693DOI Listing
January 2021

A meta-analysis of microRNA networks regulated by melatonin in cancer: Portrait of potential candidates for breast cancer treatment.

J Pineal Res 2020 Nov 19;69(4):e12693. Epub 2020 Sep 19.

Department of Cell Systems and Anatomy, UT Health, San Antonio, TX, USA.

Melatonin is a ubiquitous molecule with a broad spectrum of functions including widespread anti-cancer activities. Identifying how melatonin intervenes in complex molecular signaling at the gene level is essential to guide proper therapies. Using meta-analysis approach, herein we examined the role of melatonin in regulating the expression of 46 microRNAs (miRNAs) and their target genes in breast, oral, gastric, colorectal, and prostate cancers, and glioblastoma. The deregulated miRNA-associated target genes revealed their involvement in the regulation of cellular proliferation, differentiation, apoptosis, senescence, and autophagy. Melatonin changes the expression of miRNA-associated genes in breast, gastric, and oral cancers. These genes are associated with cellular senescence, the hedgehog signaling pathway, cell proliferation, p53 signaling, and the hippo signaling pathway. Conversely, colorectal and prostate cancers as well as glioblastoma and oral carcinoma present a clear pattern of less pronounced changes in the expression of miRNA-associated genes. Most notably, colorectal cancer displayed a unique molecular change in response to melatonin. Considering breast cancer network complexity, we compared the genes found during the meta-analysis with RNA-Seq data from breast cancer-bearing mice treated with melatonin. Mechanistically, melatonin upregulated genes associated with immune responses and apoptotic processes, whereas it downregulated genes involved in cellular aggressiveness/metastasis (eg, mitosis, telomerase activity, and angiogenesis). We further characterized the expression profile of our gene subsets with human breast cancer and found eight upregulated genes and 16 downregulated genes that were appositively correlated with melatonin. Our results pose a multi-dimension network of tumor-associated genes regulated by miRNAs potentially targeted by melatonin.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jpi.12693DOI Listing
November 2020

P-MAPA activates TLR2 and TLR4 signaling while its combination with IL-12 stimulates CD4+ and CD8+ effector T cells in ovarian cancer.

Life Sci 2020 Aug 18;254:117786. Epub 2020 May 18.

Department of Structural and Functional Biology, UNESP - São Paulo State University, Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil. Electronic address:

Aims: Ovarian cancer (OC) is the most lethal gynecological malignancies and many women develop chemoresistance associated with the inflammatory process. We investigated the effects of P-MAPA and IL-12 on the inflammatory and immune responses in a chemically-induced OC model.

Main Methods: OCs were induced with 7,12-dimethylbenz(a)anthracene into the ovarian bursa, and the animals were given P-MAPA (5 mg/kg bw., i.p., twice a week), or IL-12 (300 ng/kg bw., i.p., one a week) for 60 days, or both P-MAPA and IL-12. Immunohistochemistry, western blot, flow cytometry, and multiplex assay were used to examine the effectiveness of immunotherapies in OC.

Key Findings: The combinatory therapy improved the general OC features, reducing inflammatory cells and adipocyte accumulation, in addition to revealing a soft and mobile tissue with no adherences and peritoneal implants. P-MAPA treatment increased the levels of TLR2, TLR4 and TRIF in OCs while decreasing the number of regulatory T (Treg) cells. Additionally, the association of P-MAPA with IL-12 significantly increased the number of CD4+ and CD8+ T effector cells in draining lymph nodes. Regarding the inflammatory mediators, P-MAPA enhanced the levels of the pro-inflammatory cytokine IL-17 while P-MAPA+IL-12 increased the levels of IL-1β. Treatment with IL-12 enhanced the cytokine levels of IL-17, TNF-α, IL-1β, and IL-2 in addition to the chemokine MIP-1α.

Significance: We conclude that P-MAPA upregulated TLR2 and TLR4 signaling, possibly activating the non-canonical pathway, while attenuating the tumor immunosuppression. Also, the combination of P-MAPA with IL-12 improves the antitumor immunoresponse, opening a new therapeutic approach for fighting OC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2020.117786DOI Listing
August 2020

Long-term sucrose solution consumption causes metabolic alterations and affects hepatic oxidative stress in Wistar rats.

Biol Open 2020 02 28;9(3). Epub 2020 Feb 28.

Department of Biology, Biological Science Center, Universidade Estadual do Norte do Paraná - UENP, Luiz Meneghel Campus, Bandeirantes, 8630-000 Paraná, Brazil

As the number of overweight and obese people has risen in recent years, there has been a parallel increase in the number of people with metabolic syndrome, diabetes and non-alcoholic fatty liver disease. The consumption of artificially sweetened beverages contributes to these epidemics. This study investigated the long-term effects of ingestion of a 40% sucrose solution on serum and hepatic parameters in male Wistar rats (). After 180 days, the glycemic response, lipid profile and hepatic oxidative stress were compared to those of rats maintained on water. Sucrose ingestion led to higher body weight, increased fat deposits, reduced voluntary food intake and reduced feeding efficiency. Rats that received sucrose solution showed early signs of glucose intolerance and insulin resistance, such as hyperinsulinemia. Serum triacylglycerol (TG), very-low density lipoprotein (VLDL), cholesterol, ALT and AST levels increased after sucrose consumption. Elevated malondialdehyde and superoxide dismutase (SOD) levels and reduced glutathione levels characterize the hepatic oxidative stress due to sucrose ingestion. Liver sample histology showed vacuolar traces and increased fibrotic tissue. Our data showed the harmful effects of chronic consumption of sucrose solution, which can cause alterations that are found frequently in obesity, glucose intolerance and non-alcoholic hepatic disease, characteristics of metabolic syndrome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1242/bio.047282DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055397PMC
February 2020

The role of Toll-like receptor 4 signaling pathway in ovarian, cervical, and endometrial cancers.

Life Sci 2020 Apr 17;247:117435. Epub 2020 Feb 17.

Department of Structural and Functional Biology, UNESP, São Paulo State University, Institute of Biosciences, Botucatu, São Paulo, Brazil. Electronic address:

Toll-like receptors (TLRs) are critical sensors related to inflammation and tumorigenesis. Among all subtypes, the TLR4 is a highly described transmembrane protein involved in the inflammatory process. The TLR4/myeloid differentiation factor 88 (MyD88) signaling pathway has been implicated in oncogenic events in several tissues and is associated with survival of patients. Through activation, TLR4 recruits adaptor proteins, i.e., MyD88 or TRIF, to triggers canonical and non-canonical signaling pathways that result in distinct immune responses. In most cancer cells, uncontrolled TLR4 signaling modifies the tumor microenvironment to proliferate and evade immune surveillance. By contrast, TLR4 activation can produce antitumor activities, thereby inhibiting tumor growth and enhancing the proper immune response. We review herein recent approaches on the role of the TLR4 signaling pathway and discuss potential candidates for gynecological cancer therapies; among these agents, natural and synthetic compounds have been tested both in vitro and in vivo. Since TLR4 ligands have been investigated as effective immune-adjuvants in the context of these aggressive malignancies, we described how TLR4 signaling controls part of the tumor-related inflammatory process and which are the new targeting molecules implicated in the regulation of tumorigenicity in ovarian, cervical, and endometrial cancers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2020.117435DOI Listing
April 2020

Physical resistance training-induced changes in lipids metabolism pathways and apoptosis in prostate.

Lipids Health Dis 2020 Jan 29;19(1):14. Epub 2020 Jan 29.

Department of Anatomy, São Paulo State University, UNESP - Institute of Biosciences, Botucatu, SP, Brazil.

Background: Altered lipid metabolism is an important characteristic of neoplastic cells, with androgens and growth factors being major regulatory agents of the lipid metabolism process. We investigated the effect of physical resistance training on lipid metabolism and apoptosis in the adult Wistar rat prostate.

Methods: Two experimental groups represented sedentary and physical resistance training. Three days per week for 13 weeks, rats performed jumps in water carrying a weight load strapped to their chests as part of a physical resistance exercise protocol. Two days after the last training session, rats were anesthetized and sacrificed for blood and prostate analysis.

Results: Physical exercise improved feeding efficiency, decreased weight gain, regulated the serum-lipid profile, and modulated insulin-like growth factor-1 (IGF-1) and free testosterone concentration. Furthermore, upregulation of cluster of differentiation 36 (CD36), sterol regulatory element binding protein-1 (SREBP-1), sterol regulatory element-binding protein cleavage-activating protein (SCAP), and reduced lysosome membrane protein (LIMPII) expression were also observed in the blood and prostates of trained rats. Consistent with these results, caspase-3 expression was upregulating and the BCL-2/Bax index ratio was decreased in trained rats relative to sedentary animals.

Conclusions: In this work, physical resistance training can alter lipid metabolism and increase markers of apoptosis in the prostate, suggesting physical resistance training as a potential novel therapeutic strategy for treating prostate cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12944-020-1195-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6990525PMC
January 2020

Melatonin Promotes Uterine and Placental Health: Potential Molecular Mechanisms.

Int J Mol Sci 2019 Dec 31;21(1). Epub 2019 Dec 31.

Department of Biology and Technology-UENP/CLM-Universidade Estadual do Norte do Paraná, Bandeirantes, 86360-000 Paraná, Brazil.

The development of the endometrium is a cyclic event tightly regulated by hormones and growth factors to coordinate the menstrual cycle while promoting a suitable microenvironment for embryo implantation during the "receptivity window". Many women experience uterine failures that hamper the success of conception, such as endometrium thickness, endometriosis, luteal phase defects, endometrial polyps, adenomyosis, viral infection, and even endometrial cancer; most of these disturbances involve changes in endocrine components or cell damage. The emerging evidence has proven that circadian rhythm deregulation followed by low circulating melatonin is associated with low implantation rates and difficulties to maintain pregnancy. Given that melatonin is a circadian-regulating hormone also involved in the maintenance of uterine homeostasis through regulation of numerous pathways associated with uterine receptivity and gestation, the success of female reproduction may be dependent on the levels and activity of uterine and placental melatonin. Based on the fact that irregular production of maternal and placental melatonin is related to recurrent spontaneous abortion and maternal/fetal disturbances, melatonin replacement may offer an excellent opportunity to restore normal physiological function of the affected tissues. By alleviating oxidative damage in the placenta, melatonin favors nutrient transfer and improves vascular dynamics at the uterine-placental interface. This review focuses on the main in vivo and in vitro functions of melatonin on uterine physiological processes, such as decidualization and implantation, and also on the fetomaternal tissues, and reviews how exogenous melatonin functions from a mechanistic standpoint to preserve the organ health. New insights on the potential signaling pathways whereby melatonin resists preeclampsia and endometriosis are further emphasized in this review.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms21010300DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982088PMC
December 2019

P-MAPA and IL-12 Differentially Regulate Proteins Associated with Ovarian Cancer Progression: A Proteomic Study.

ACS Omega 2019 Dec 11;4(26):21761-21777. Epub 2019 Dec 11.

Department of Anatomy, Institute of Biosciences and Center for the Study of Venoms and Venomous Animals (CEVAP), UNESP-Universidade Estadual Paulista, Botucatu, São Paulo 18618-689, Brazil.

To investigate the potential role of immunotherapies in the cellular and molecular mechanisms associated with ovarian cancer (OC), we applied a comparative proteomic toll using protein identification combined with mass spectrometry. Herein, the effects of the protein aggregate magnesium-ammonium phospholinoleate-palmitoleate anhydride, known as P-MAPA, and the human recombinant interleukin-12 (hrIL-12) were tested alone or in combination in human SKOV-3 cells. The doses and period were defined based on a previous study, which showed that 25 μg/mL P-MAPA and 1 ng/mL IL-12 are sufficient to reduce cell metabolism after 48 h. Indeed, among 2,881 proteins modulated by the treatments, 532 of them were strictly concordant and common. P-MAPA therapy upregulated proteins involved in tight junction, focal adhesion, ribosome constitution, GTP hydrolysis, semaphorin interactions, and expression of SLIT and ROBO, whereas it downregulated ERBB4 signaling, toll-like receptor signaling, regulation of NOTCH 4, and the ubiquitin proteasome pathway. In addition, IL-12 therapy led to upregulation of leukocyte migration, tight junction, and cell signaling, while cell communication, cell metabolism, and Wnt signaling were significantly downregulated in OC cells. A clear majority of proteins that were overexpressed by the combination of P-MAPA with IL-12 are involved in tight junction, focal adhesion, DNA methylation, metabolism of RNA, and ribosomal function; only a small number of downregulated proteins were involved in cell signaling, energy and mitochondrial processes, cell oxidation and senescence, and Wnt signaling. These findings suggest that P-MAPA and IL-12 efficiently regulated important proteins associated with OC progression; these altered proteins may represent potential targets for OC treatment in addition to its immunoadjuvant effects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsomega.9b02512DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933580PMC
December 2019

P-MAPA and Interleukin-12 Reduce Cell Migration/Invasion and Attenuate the Toll-Like Receptor-Mediated Inflammatory Response in Ovarian Cancer SKOV-3 Cells: A Preliminary Study.

Molecules 2019 Dec 18;25(1). Epub 2019 Dec 18.

Department of Anatomy, UNESP-São Paulo State University, Institute of Biosciences, Botucatu, 18618-689 São Paulo, Brazil.

Immunotherapies have emerged as promising complementary treatments for ovarian cancer (OC), but its effective and direct role on OC cells is unclear. This study examined the combinatory effects of the protein aggregate magnesium-ammonium phospholinoleate-palmitoleate anhydride, known as P-MAPA, and the human recombinant interleukin-12 (hrIL-12) on cell migration/invasion, apoptosis, toll-like receptor (TLR)-mediated inflammation, and cytokine/chemokine profile in human OC cell line SKOV-3. P-MAPA and IL-12 showed cancer cell toxicity under low doses after 48 h. Although apoptosis/necrosis and the cell cycle were unchanged by the treatments, P-MAPA enhanced the sensitivity to paclitaxel (PTX) and P-MAPA associated with IL-12 significantly reduced the migratory potential and invasion capacity of SKOV-3 cells. P-MAPA therapy reduced TLR2 immunostaining and the myeloid differentiation factor 88 (MyD88), but not the TLR4 levels. Moreover, the combination of P-MAPA with IL-12 attenuated the levels of MyD88, interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-kB p65). The IL-12 levels were increased and P-MAPA stimulated the secretion of cytokines IL-3, IL-9, IL-10, and chemokines MDC/CCL22 and, regulated on activation, normal T cells expressed and secreted (RANTES)/CCL5. Conversely, combination therapy reduced the levels of IL-3, IL-9, IL-10, MDC/CCL22, and RANTES/CCL5. Collectively, P-MAPA and IL-12 reduce cell dynamics and effectively target the TLR-related downstream molecules, eliciting a protective effect against chemoresistance. P-MAPA also stimulates the secretion of anti-inflammatory molecules, possibly having an immune response in the OC microenvironment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules25010005DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982916PMC
December 2019

Maternal Protein Restriction Modulates Angiogenesis and AQP9 Expression Leading to a Delay in Postnatal Epididymal Development in Rat.

Cells 2019 09 17;8(9). Epub 2019 Sep 17.

Department of Anatomy, Institute of Biosciences, São Paulo State University-UNESP, Botucatu 18618-970, SP, Brazil.

The maternal nutritional status is essential to the health and well-being of the fetus. Maternal protein restriction during the perinatal stage causes sperm alterations in the offspring that are associated with epididymal dysfunctions. Vascular endothelial growth factor (VEGF) and its receptor, VEGFr-2, as well as aquaporins (AQPs) are important regulators of angiogenesis and the epididymal microenvironment and are associated with male fertility. We investigated the effects of maternal protein restriction on epididymal angiogenesis and AQP expression in the early stages of postnatal epididymal development. Pregnant rats were divided into two experimental groups that received either a normoprotein (17% protein) or low-protein diet (6% protein) during gestation and lactation. At postnatal day (PND)7 and PND14, male offspring were euthanized, the epididymides were subjected to morphometric and microvascular density analyses and to VEGF-A, VEGF-r2, AQP1 and AQP9 expression analyses. The maternal low-protein diet decreased AQP9 and VEGFr-2 expression, decreased epididymal microvascularity and altered the morphometric features of the epididymal epithelium; no changes in AQP1 expression were observed at the beginning of postnatal epididymal development. Maternal protein restriction alters microvascularization and affects molecules involved in the epidydimal microenvironment, resulting in morphometric alterations related to a delay in the beginning of epididymis postnatal development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cells8091094DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770568PMC
September 2019

Mimicking the tumor microenvironment: Fibroblasts reduce miR-29b expression and increase the motility of ovarian cancer cells in a co-culture model.

Biochem Biophys Res Commun 2019 08 11;516(1):96-101. Epub 2019 Jun 11.

Sao Paulo State University (UNESP), Institute of Biosciences, Department of Morphology, Botucatu, Sao Paulo, Brazil. Electronic address:

Ovarian cancer (OC) is a highly prevalent gynecological malignancy worldwide. Throughout ovarian carcinogenesis, the crosstalk between cellular components of the microenvironment, including tumor cells and fibroblasts, is proposed to play critical roles in cancer progression. The dysregulation of microRNA expression is also a pronounced feature of the OC. The screening of microRNAs, mainly those involved in OC microenvironment, could have diagnostic and/or therapeutic potential for this malignancy. Thus, we assessed the influence of fibroblasts on microRNA expression and the motility of OC cells. To achieve this goal, SKOV-3 cancer cells were co-cultured with human normal fibroblasts derived from primary culture (FP-96). Cell viability, expression of tumor suppressor microRNAs and oncomiRs by RT-qPCR, cell migration by wound healing assay and analysis of MMP-2 activity by zymography were performed in SKOV-3 cells. Moreover, α-smooth muscle actin (α-SMA) expression was evaluated by Western blot in FP-96 fibroblasts. Notably, the co-culture downregulated the tumor suppressor miR-29b and increased migration of SKOV-3 cells. In addition, co-culture increased the activity of MMP-2, which is a miR-29 target, and accounted for extracellular matrix remodeling and augmented cellular motility. Concomitantly, the co-culture system induced α-SMA expression in FP-96 fibroblasts, the commonly expressed marker in cancer-associated fibroblasts (CAFs). Our findings suggest that the potential crosstalk between OC cells and fibroblasts in tumor microenvironment may play a key role in the progression of OC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2019.06.001DOI Listing
August 2019

Maternal protein restriction differentially alters the expression of AQP1, AQP9 and VEGFr-2 in the epididymis of rat offspring.

Int J Mol Sci 2019 Jan 22;20(3). Epub 2019 Jan 22.

Department of Anatomy, Institute of Biosciences, São Paulo State University-UNESP, 18618-970 Botucatu-SP, Brazil.

Background: Maternal protein restriction causes sperm alterations in the offspring, most of which are associated with epididymal functions. Because fluid reabsorption/secretion dynamics in the epididymal environment play important roles in the process of sperm maturation and concentration, we investigated the effects of maternal protein restriction on the expression of aquaporins (AQP1 and AQP9), vascular endothelial growth factor (VEGFa), and its receptor VEGFr-2 in different stages of postnatal epididymal development.

Methods: Pregnant rats were divided into groups that received normoprotein (17% protein) and low-protein diets (6% protein) during gestation and lactation. After weaning, male rats only received the standard diet and were euthanized at the predetermined ages of 21, 44 and 120 days.

Results: Maternal protein restriction decreased AQP1 and AQP9 expression in the initial segment and caput epididymis compared to the increased expression of these proteins observed in the corpus and cauda at all ages. Although protein restriction reduced the microvasculature density (MVD) on postnatal day (PND) 21 and 44, the MVD was unaltered on PND 120.

Conclusions: Maternal protein restriction changed the structure or function of the offspring's epididymis, specifically by affecting fluid dynamics and vasculogenesis in important stages of epididymis development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms20030469DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387270PMC
January 2019

Mitochondrial functions and melatonin: a tour of the reproductive cancers.

Cell Mol Life Sci 2019 Mar 14;76(5):837-863. Epub 2018 Nov 14.

Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil.

Cancers of the reproductive organs have a strong association with mitochondrial defects, and a deeper understanding of the role of this organelle in preneoplastic-neoplastic changes is important to determine the appropriate therapeutic intervention. Mitochondria are involved in events during cancer development, including metabolic and oxidative status, acquisition of metastatic potential, resistance to chemotherapy, apoptosis, and others. Because of their origin from melatonin-producing bacteria, mitochondria are speculated to produce melatonin and its derivatives at high levels; in addition, exogenously administered melatonin accumulates in the mitochondria against a concentration gradient. Melatonin is transported into tumor cell by GLUT/SLC2A and/or by the PEPT1/2 transporters, and plays beneficial roles in mitochondrial homeostasis, such as influencing oxidative phosphorylation and electron flux, ATP synthesis, bioenergetics, calcium influx, and mitochondrial permeability transition pore. Moreover, melatonin promotes mitochondrial homeostasis by regulating nuclear DNA and mtDNA transcriptional activities. This review focuses on the main functions of melatonin on mitochondrial processes, and reviews from a mechanistic standpoint, how mitochondrial crosstalk evolved in ovarian, endometrial, cervical, breast, and prostate cancers relative to melatonin's known actions. We put emphasis on signaling pathways whereby melatonin interferes within cancer-cell mitochondria after its administration. Depending on subtype and intratumor metabolic heterogeneity, melatonin seems to be helpful in promoting apoptosis, anti-proliferation, pro-oxidation, metabolic shifting, inhibiting neovasculogenesis and controlling inflammation, and restoration of chemosensitivity. This results in attenuation of development, progression, and metastatic potential of reproductive cancers, in addition to lowering the risk of recurrence and improving the life quality of patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00018-018-2963-0DOI Listing
March 2019

Histopathological changes in androgenized ovaries are recovered by melatonin treatment.

Int J Exp Pathol 2018 08;99(4):158-171

Departamento de Biotecnologia, Faculdade de Ciências e Letras, Universidade Estadual Paulista - UNESP, Assis, São Paulo, Brazil.

Nandrolone decanoate (ND) is a synthetic steroid, which promotes adverse effects on the ovarian tissue, and melatonin (MLT) exhibits a number of beneficial properties in the reproductive system. This study evaluated the general features of the ovarian tissue and the immunoexpression of sex steroid receptors in ND-treated rats that were submitted to short-term melatonin treatment. Adult rats received mineral oil (control group) and ND at doses of 7.5 mg/kg for 15 days (ND-treated group). The treatment with MLT (10mg/kg for 7 days) was given alone, before or in combination with ND. All ND-treated animals showed persistent dioestrus. In the androgenized groups that received MLT, ovarian morphology and size, and the number/area of corpora lutea were recovered. The number of healthy and atretic follicles was recovered when MLT was administered prior to ND; this was similar to the ovaries of control and MLT groups. There was a decrease in estrogen receptors immunostaining in the follicles of androgenized rats that were treated with MLT, and pretreatment with MLT reduced the expression of androgen receptor in atretic follicles and corpora lutea, when compared with ND-treated group. We conclude that MLT treatment recovered the histopathological aspects of the androgenized ovaries, and MLT pretreatment was the most effective.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/iep.12283DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157297PMC
August 2018

P-MAPA immunotherapy potentiates the effect of cisplatin on serous ovarian carcinoma through targeting TLR4 signaling.

J Ovarian Res 2018 Jan 17;11(1). Epub 2018 Jan 17.

Farmabrasilis R&D Division, Campinas, SP, Brazil.

Background: Toll-like receptors (TLRs) are transmembrane proteins expressed on the surface of ovarian cancer (OC) and immune cells. Identifying the specific roles of the TLR-mediated signaling pathways in OC cells is important to guide new treatments. Because immunotherapies have emerged as the adjuvant treatment for patients with OC, we investigated the effect of a promising immunotherapeutic strategy based on protein aggregate magnesium-ammonium phospholinoleate-palmitoleate anhydride (P-MAPA) combined with cisplatin (CIS) on the TLR2 and TLR4 signaling pathways via myeloid differentiation factor 88 (MyD88) and TLR-associated activator of interferon (TRIF) in an in vivo model of OC.

Methods: Tumors were chemically induced by a single injection of 100 μg of 7,12-dimethylbenz(a)anthracene (DMBA) directly under the left ovarian bursa in Fischer 344 rats. After the rats developed serous papillary OC, they were given P-MAPA, CIS or the combination P-MAPA+CIS as therapies. To understand the effects of the treatments, we assessed the tumor size, histopathology, and the TLR2- and TLR4-mediated inflammatory responses.

Results: Although CIS therapy was more effective than P-MAPA in reducing the tumor size, P-MAPA immunotherapy significantly increased the expressions of TLR2 and TLR4. More importantly, the combination of P-MAPA with CIS showed a greater survival rate compared to CIS alone, and exhibited a significant reduction in tumor volume compared to P-MAPA alone. The combination therapy also promoted the increase in the levels of the following OC-related proteins: TLR4, MyD88, TRIF, inhibitor of phosphorylated NF-kB alpha (p-IkBα), and nuclear factor kappa B (NF-kB p65) in both cytoplasmic and nuclear sites. While P-MAPA had no apparent effect on tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6, it seems to increase interferon-γ (IFN-γ), which may induce the Thelper (Th1)-mediated immune response.

Conclusion: Collectively, our results suggest that P-MAPA immunotherapy combined with cisplatin could be considered an important therapeutic strategy against OC cells based on signaling pathways activated by TLR4.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13048-018-0380-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5773141PMC
January 2018

Melatonin as a promising agent to treat ovarian cancer: molecular mechanisms.

Carcinogenesis 2017 10;38(10):945-952

Department of Anatomy, Institute of Biosciences, UNESP - Universidade Estadual Paulista, Botucatu-SP, Brazil and Department of Cellular and Structural Biology, UTHSCSA, San Antonio, TX 78229, USA.

Ovarian cancer (OC) has the highest mortality rate of all gynecological cancers, and most patients develop chemoresistance after first-line treatments. Despite recent advances, the 5-year relative survival is ~45% for all OC subtypes, and invasive epithelial OC has only a 17% survival rate when diagnosed at a late stage. Identification of new efficacious molecules or biomarkers represents important opportunities in the treatment of OC. The pharmacological and physiological properties of melatonin indicate this agent could be useful against OC progression and metastasis. In normal cells, melatonin has potent antioxidant and anti-apoptotic actions. Conversely, melatonin has pro-oxidant as well as anti-proliferative, anti-angiogenic and immunomodulatory properties in many cancer types including hormone-dependent cancers. Although melatonin receptors have been identified in OC cells, the exact mechanism by which melatonin induces anticancer activities remains incompletely understood. Clinical studies have reported negative correlation between aggressiveness of OC and serum levels of melatonin, reinforcing the idea that melatonin may be a critical factor determining OC development. In vitro and in vivo studies suggest melatonin differentially regulates multiple signaling pathways in OC cells. This focused review explores the potential mechanisms of action of melatonin on cultured OC cells and in experimental models of OC in an attempt to clarify how melatonin modulates the signaling pathways involved in cancer cell apoptosis, survival, inflammation, proliferation and metabolic processes. Based on the evidence presented, we feel that melatonin, as an agent that controls cellular signals associated with malignancy, may be beneficial in combination with other therapeutics for OC treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/carcin/bgx054DOI Listing
October 2017

The role of sex hormones and steroid receptors on female reproductive cancers.

Steroids 2017 02 29;118:93-108. Epub 2016 Dec 29.

Department of Biology and Technology, UENP/CLM - Universidade Estadual do Norte do Paraná, PR, Brazil.

Sex steroids have been widely described to be associated with a number of human diseases, including hormone-dependent tumors. Several studies have been concerned about the factors regulating the availability of sex steroids and its importance in the pathophysiological aspects of the reproductive cancers in women. In premenopausal women, large fluctuations in the concentration of circulating estradiol (E2) and progesterone (P4) orchestrate many events across the menstrual cycle. After menopause, the levels of circulating E2 and P4 decline but remain at high concentration in the peripheral tissues. Notably, there is a strong relationship between circulating sex hormones and female reproductive cancers (e.g. ovarian, breast, and endometrial cancers). These hormones activate a number of specific signaling pathways after binding either to estrogen receptors (ERs), especially ERα, ERα36, and ERβ or progesterone receptors (PRs). Importantly, the course of the disease will depend on particular transactivation pathway. Identifying ER- or PR-positive tumors will benefit patients in terms of proper endocrine therapy. Based on hormonal responsiveness, effective prevention methods for ovarian, breast, and endometrial cancers represent a special opportunity for women at risk of malignancies. Hormone replacement therapy (HRT) might significantly increase the risk of these cancer types, and endocrine treatments targeting ER signaling may be helpful against E2-dependent tumors. This review will present the role of sex steroids and their receptors associated with the risk of developing female reproductive cancers, with emphasis on E2 levels in pre and postmenopausal women. In addition, new therapeutic strategies for improving the survival rate outcomes in women will be addressed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.steroids.2016.12.011DOI Listing
February 2017

Ovarian sex steroid receptors and sex hormones in androgenized rats.

Reproduction 2016 Nov 25;152(5):545-559. Epub 2016 Aug 25.

Universidade Estadual Paulista - UNESPFaculdade de Ciências e Letras, Departamento de Ciências Biológicas. Assis, São Paulo, Brazil.

This study evaluated for the first time the effects of different doses of the anabolic steroid nandrolone decanoate (ND) on the expression of ovarian steroid receptors (AR, ER-α (ESR1) and ER-β (ESR2)) and related sex hormones after treatment and recovery periods in adult rats. The animals were injected subcutaneously with doses of ND (1.87, 3.75, 7.5 or 15 mg/kg b.w.) or mineral oil (control group) for 15 days, and the experimental groups were divided into three periods of evaluation: (a) ND treatment for 15 days, (b) ND treatment and recovery for a period of 30 days and (c) ND treatment and recovery for a period of 60 days. Estrous cycle was monitored daily. At the end of each period, rats were killed for collection of blood and ovaries. Persistent diestrus occurred in all rats during ND treatment and after 30-day recovery. The highest dose of ND was able to maintain all rats arrested at diestrus until 60-day recovery. The expression of steroid receptors varied in a dose- and period-dependent manner, having a more pronounced response with the dose of 15 mg ND/kg. ND treatment increased serum levels of testosterone, 17β-estradiol and dihydrotestosterone, especially at the highest doses of 7.5 and 15 mg ND/kg. No change was observed in the levels of follicle-stimulating hormone (FSH), whereas levels of the luteinizing hormone (LH) varied according to the dose and period. In conclusion, the ovarian sex steroid receptors and sex hormones were restored only at lower doses of ND and after a longer period of recovery.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1530/REP-16-0233DOI Listing
November 2016

Sex steroid receptors and apoptosis-related proteins are differentially expressed in polycystic ovaries of adult dogs.

Tissue Cell 2016 Feb 23;48(1):10-7. Epub 2015 Dec 23.

Department of Veterinary, Faculty of Veterinary Medicine and Zootechny, UNESP - Univ. Estadual Paulista, Botucatu, SP 18618-970, Brazil.

In Polycystic Ovaries (PCOs), the dynamics of sex hormone receptors and follicle-related apoptotic signaling remain unknown. In this study, we investigated the expression of androgen receptors (AR), estrogen receptors (ERα and ERβ), and apoptosis-related molecules (BAX, active caspase-3, Bcl-2 and Survivin) on different follicular stages of PCOs in adult dogs. Clinical evidences of high estradiol and testosterone levels, persistent estrus and vaginal discharge were observed. Inhibin B immunolabeling was increased in primary and 2 to 5-mm follicles, and a marked epithelial hyperplasia was common in the ovarian surface. Ovarian epithelia and primary follicles showed low expression of AR, ERα, and ERβ, whereas a moderate immunoexpression of AR was found in theca cells of secondary follicles and cysts. In PCOs, growing follicles displayed ERα expression, and secondary follicles exhibited higher ERβ expression. In addition, while few ERα-positive cells were found in the cysts, ERβ was moderately expressed in growing follicles and cysts. BAX was upregulated in the ovarian epithelium, primary follicles, and in the wall of follicular cysts. Active caspase-3 was significantly downregulated in the epithelium, primary follicles, and follicular cysts, whereas growing follicles had a strong immunoexpression in the granulosa cells. Bcl-2 and survivin were increased in the epithelium and primary follicles, and only survivin was upregulated in secondary and growing follicles. While Bcl-2 had a diffuse immunexpression in the follicular cysts, survivin was overexpressed by these cells. We concluded that sex steroid receptors and apoptotic proteins are differentially expressed in the follicles of adult dogs with PCOs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tice.2015.12.003DOI Listing
February 2016

Effects of different doses of nandrolone decanoate on estrous cycle and ovarian tissue of rats after treatment and recovery periods.

Int J Exp Pathol 2015 Oct 17;96(5):338-49. Epub 2015 Nov 17.

Department of Biological Sciences, Faculty of Sciences and Letters, Univ Estadual Paulista - UNESP, Assis, Brazil.

This study tested the hypothesis that different doses of nandrolone decanoate (ND) will cause changes in the estrous cycle and ovarian tissue of adult rats; and investigated the duration of the recovery period that is sufficient to restore the damage in the animals treated with different doses. Wistar rats were treated with ND at doses of 1.87, 3.75, 7.5 and 15 mg/kg body weight, or received mineral oil (control group) for 15 days, subcutaneously. All animals were divided into three groups according to the treatment periods: (i) ND treatment for 15 days; (ii) ND treatment followed by a 30-day recovery; and (iii) ND treatment followed by a 60-day recovery. Estrous cycle was monitored daily, and at the end of each period, the animals were euthanized for histopathological analysis. During ND treatment and after 30-day recovery, all animals exhibited persistent diestrus. After a 60-day recovery, persistent diestrus was only maintained in the group that had received the highest dose. Ovarian weight was decreased significantly after the 30-day recovery, regardless of ND doses, compared with the control group. There was a reduction (P < 0.05) in the number of corpora lutea and antral and growing follicles, in contrast to an increase (P < 0.05) in atretic follicles in a dose- and time-dependent manner. Remarkable histopathological changes occurred in the ovaries of all ND-treated groups. In conclusion, the different doses of ND caused changes in the estrous cycle and ovarian tissue of rats, and recovery periods (30 and 60 days) were insufficient to completely restore the damage in the animals treated with the highest dose.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/iep.12144DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4693558PMC
October 2015

Ethanol intake-induced apoptosis in glial cells and axonal disorders in the cerebellar white matter of UChA rats (voluntary ethanol consumers).

Tissue Cell 2015 Aug 6;47(4):389-94. Epub 2015 Jun 6.

Department of Anatomy, IBB/UNESP, Botucatu, SP, Brazil. Electronic address:

Ethanol intake may cause alterations in cellular metabolism altering motricity, learning and cognition. The cerebellum is one of the most susceptible organs to ethanol-related disorders during development, and is associated with oxidative stress-induced apoptosis being crucial for pathogenic consequences. The UChA variety is a special strain of Wistar rat genetically selected and represents a rare model for the studies related to genetic, biochemical, physiological, nutritional, and pharmacological effects of ethanol. We evaluated the structure and apoptosis in the cerebellar white matter of UChA rats. There were two groups of 09 rats: a control group that did not consume ethanol, and an experimental group of UChA rats that consumed ethanol at 10% (v/v) (<2 g ethanol/kg body weight/day). At 120 days old, rats were anaesthetized followed by decapitation, and their cerebella were collected and fixed. Cerebellar sections were subjected to immunohistochemistry for Caspase-3 and XIAP and transmission electron microscopy (TEM). The UChA group showed more glial cells immunoreactive for caspase-3 and less for XIAP than control group. Alcohol consumption affected myelin integrity. Severe ultrastructural damages in UChA group were observed such as disruption of the myelin sheath, disorganization and deformation of its components, and an increase in the interaxonal spaces. In conclusion, our data demonstrated that ethanol induced apoptosis in the glial cells and promoted an intense change in the myelin sheath of UChA rats, which may cause functional disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tice.2015.05.006DOI Listing
August 2015

Dose-dependent effects and reversibility of the injuries caused by nandrolone decanoate in uterine tissue and fertility of rats.

Birth Defects Res B Dev Reprod Toxicol 2014 Apr;101(2):168-77

Faculty of Sciences and Letters, Department of Biological Sciences, Univ Estadual Paulista-UNESP, Assis, São Paulo, Brazil.

This study is the first to investigate the effects of different doses of nandrolone decanoate (ND) upon uterine tissue and fertility, and if the reproductive alterations can be restored after cessation of the treatment. Wistar female rats were treated with ND at doses of 1.87, 3.75, 7.5, and 15 mg/kg body weight, diluted in vehicle (n = 30/group), or received only mineral oil (control group, n = 45). The animals were divided into three periods of study: ND-treated receiving a daily subcutaneous injection for 15 consecutive days (1), and treatment with ND followed by 30-day recovery (2), and 60-day recovery (3). At the end of each period, five females per group were induced to death to histopathological analysis and the others were allowed to fertility evaluation (at 19th gestational day). Animals that received ND followed by 30-day recovery exhibited persistent diestrous and marked suppression of reproductive capacity. Conversely, after 60-day recovery, only lowest doses females (1.87 and 3.75 mg/kg) exhibited restoration of normal estrous cyclicity. Uterine weights were increased after ND treatment similarly to that of the controls after 60-day recovery. The ND-treated groups showed histopathological changes in the endometrium, myometrium, and perimetrium, and an increase in the thickness of both muscular and serous layers. Notably, the recovery of uterine tissue after ND treatment was dose- and period-dependent. We reported that administration of ND promoted damage in uterine tissue and fertility of rats, and the recovery periods were insufficient to restore all of the side effects caused by ND under a dose-dependent response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/bdrb.21104DOI Listing
April 2014

Combined effects of age and diet-induced obesity on biochemical parameters and cardiac energy metabolism in rats.

Indian J Biochem Biophys 2013 Feb;50(1):40-7

Department of Anatomy, Bioscience Institute, Univ. Estadual Paulista, UNESP, Botucatu, Zip Code: 510; P.O Box: 18618-970, São Paulo, Brazil.

Obesity is often associated with decreased fat oxidation and aging is a well-recognized risk factor for cardiovascular disease. This study investigated calorimetric and morphometric parameters, as well as the glucose levels, lipid profile and cardiac energy metabolism in young and old, controls and obese rats. The animals were divided into four groups: Group I (GI): young rats fed normal diet for 75 days; Group II (GII): young rats fed hypercaloric diet (HD) for 75 days; Group III (GIII): old rats fed normal diet for 510 days; and Group IV (G IV): old rats fed HD for 510 days. The following analyses were performed: calorimetric, glucose and lipid concentrations, atherogenic index (AI), total antioxidant substances (TAS), fat depots, cardiac lipid hydroperoxide (LH) and cardiac lactate dehydrogenase (LDH), citrate synthase (CS), phosphofructokinase (PFK) and pyruvate dehydrogenase (PDH) activities. Older animals were heavier than young and the hypercaloric animals were heavier than controls. Animals from GIV had lower fat oxidation than GIII, which in turn, had higher fat oxidation than GI. Total cholesterol, LDL-C and all fat depots were higher in the GII, as compared to GI. The GIV rats had higher VLDL, retroperitoneal fat, serum lipids and cardiac glycogen levels than GII. Furthermore, GIV rats had higher fat depots, triacylglycerol, total cholesterol and VLDL than GIII. Animals from GII and -IV showed higher LH and AI than age-matched controls. Older hypercaloric rats also had higher TAS than older control rats, which also had lower LH and TAS than younger control rats. Aged animals had increased CS and LDH and decreased PFK and PDH activities. Additionally, GIV rats exhibited an increase in PDH activity, compared to GIII. We conclude that the consumption of HD coupled with aging leads to impaired basal and cardiac metabolism.
View Article and Find Full Text PDF

Download full-text PDF

Source
February 2013

Nandrolone decanoate and physical effort: histological and morphometrical assessment in adult rat uterus.

Anat Rec (Hoboken) 2011 Feb 16;294(2):335-41. Epub 2010 Dec 16.

Department of Biological Sciences, Faculty of Sciences and Letters, Paulista State University (UNESP), Assis, São Paulo, Brazil.

In the past decades, the therapeutic use of anabolic androgenic steroids (AAS) has been overshadowed by illicit abuse of these drugs by athletes and non-athletes. Since that AAS can affect the reproductive tract, resulting in reproduction and fertilization damages, the purpose of this study was to investigate the nandrolone decanoate (ND) effects, associated or not with physical effort, on the uterine histomorphometric parameters. Female Wistar rats, sedentary or not, were exposed to treatment with ND by intraperitoneal injection (5 mg/kg/day, once a week) during four consecutive weeks. Control animals, sedentary or not, received vehicle alone (propylene glycol) in the same manner. The physical activity was forced swimming (20 min/day). During the experiment, all animals were monitored by daily vaginal smears. After 30 days of treatment, the females were sacrificed and their uteri collected and examined under light microscopy techniques. The ND-treated females showed estrus acyclicity and decreased thickness of both the epithelium and endometrial stroma. A reduction in the number and size of blood vessels was also found in ND-treated rats submitted to physical effort when compared to ND sedentary rats. ND-treated rats, regardless of exercise, exhibited stromal fibrosis and reduced gland ducts that displayed high mitotic activity. A remarkable widespread presence of leukocytes occurred in rats receiving ND and submitted to exercise. These results suggest that ND associated or not with physical effort causes histomorphometric changes to the rat uterus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ar.21314DOI Listing
February 2011